Unsupervised semantic segmentation of urban high-density multispectral point clouds
- URL: http://arxiv.org/abs/2410.18520v1
- Date: Thu, 24 Oct 2024 08:11:34 GMT
- Title: Unsupervised semantic segmentation of urban high-density multispectral point clouds
- Authors: Oona Oinonen, Lassi Ruoppa, Josef Taher, Matti Lehtomäki, Leena Matikainen, Kirsi Karila, Teemu Hakala, Antero Kukko, Harri Kaartinen, Juha Hyyppä,
- Abstract summary: The availability of highly accurate urban airborne laser scanning (ALS) data will increase rapidly in the future.
Current challenges in data processing are related to the limited spectral information and low point density of most ALS datasets.
This study proposes to semantically segment new high-density (1200 points per square metre on average) multispectral ALS data with an unsupervised ground-aware deep clustering method GroupSP.
- Score: 1.5514592342516158
- License:
- Abstract: The availability of highly accurate urban airborne laser scanning (ALS) data will increase rapidly in the future, especially as acquisition costs decrease, for example through the use of drones. Current challenges in data processing are related to the limited spectral information and low point density of most ALS datasets. Another challenge will be the growing need for annotated training data, frequently produced by manual processes, to enable semantic interpretation of point clouds. This study proposes to semantically segment new high-density (1200 points per square metre on average) multispectral ALS data with an unsupervised ground-aware deep clustering method GroupSP inspired by the unsupervised GrowSP algorithm. GroupSP divides the scene into superpoints as a preprocessing step. The neural network is trained iteratively by grouping the superpoints and using the grouping assignments as pseudo-labels. The predictions for the unseen data are given by over-segmenting the test set and mapping the predicted classes into ground truth classes manually or with automated majority voting. GroupSP obtained an overall accuracy (oAcc) of 97% and a mean intersection over union (mIoU) of 80%. When compared to other unsupervised semantic segmentation methods, GroupSP outperformed GrowSP and non-deep K-means. However, a supervised random forest classifier outperformed GroupSP. The labelling efforts in GroupSP can be minimal; it was shown, that the GroupSP can semantically segment seven urban classes (building, high vegetation, low vegetation, asphalt, rock, football field, and gravel) with oAcc of 95% and mIoU of 75% using only 0.004% of the available annotated points in the mapping assignment. Finally, the multispectral information was examined; adding each new spectral channel improved the mIoU. Additionally, echo deviation was valuable, especially when distinguishing ground-level classes.
Related papers
- Hierarchical Point-based Active Learning for Semi-supervised Point Cloud
Semantic Segmentation [48.40853126077237]
It is labour-intensive to acquire large-scale point cloud data with point-wise labels.
Active learning is one of the effective strategies to achieve this purpose but is still under-explored.
This paper develops a hierarchical point-based active learning strategy.
arXiv Detail & Related papers (2023-08-22T03:52:05Z) - A Deep Dive into Deep Cluster [0.2578242050187029]
DeepCluster is a simple and scalable unsupervised pretraining of visual representations.
We show that DeepCluster convergence and performance depend on the interplay between the quality of the randomly filters of the convolutional layer and the selected number of clusters.
arXiv Detail & Related papers (2022-07-24T22:55:09Z) - Heterogeneous Federated Learning via Grouped Sequential-to-Parallel
Training [60.892342868936865]
Federated learning (FL) is a rapidly growing privacy-preserving collaborative machine learning paradigm.
We propose a data heterogeneous-robust FL approach, FedGSP, to address this challenge.
We show that FedGSP improves the accuracy by 3.7% on average compared with seven state-of-the-art approaches.
arXiv Detail & Related papers (2022-01-31T03:15:28Z) - Towards Group Robustness in the presence of Partial Group Labels [61.33713547766866]
spurious correlations between input samples and the target labels wrongly direct the neural network predictions.
We propose an algorithm that optimize for the worst-off group assignments from a constraint set.
We show improvements in the minority group's performance while preserving overall aggregate accuracy across groups.
arXiv Detail & Related papers (2022-01-10T22:04:48Z) - CvS: Classification via Segmentation For Small Datasets [52.821178654631254]
This paper presents CvS, a cost-effective classifier for small datasets that derives the classification labels from predicting the segmentation maps.
We evaluate the effectiveness of our framework on diverse problems showing that CvS is able to achieve much higher classification results compared to previous methods when given only a handful of examples.
arXiv Detail & Related papers (2021-10-29T18:41:15Z) - A new weakly supervised approach for ALS point cloud semantic
segmentation [1.4620086904601473]
We propose a deep-learning based weakly supervised framework for semantic segmentation of ALS point clouds.
We exploit potential information from unlabeled data subject to incomplete and sparse labels.
Our method achieves an overall accuracy of 83.0% and an average F1 score of 70.0%, which have increased by 6.9% and 12.8% respectively.
arXiv Detail & Related papers (2021-10-04T14:00:23Z) - Weakly Supervised Person Search with Region Siamese Networks [65.76237418040071]
Supervised learning is dominant in person search, but it requires elaborate labeling of bounding boxes and identities.
We present a weakly supervised setting where only bounding box annotations are available.
Our model achieves the rank-1 of 87.1% and mAP of 86.0% on CUHK-SYSU benchmark.
arXiv Detail & Related papers (2021-09-13T16:33:27Z) - Learning to Count in the Crowd from Limited Labeled Data [109.2954525909007]
We focus on reducing the annotation efforts by learning to count in the crowd from limited number of labeled samples.
Specifically, we propose a Gaussian Process-based iterative learning mechanism that involves estimation of pseudo-ground truth for the unlabeled data.
arXiv Detail & Related papers (2020-07-07T04:17:01Z) - Improving Deep Hyperspectral Image Classification Performance with
Spectral Unmixing [3.84448093764973]
We propose an abundance-based multi-HSI classification method.
We convert every HSI from the spectral domain to the abundance domain by a dataset-specific autoencoder.
Secondly, the abundance representations from multiple HSIs are collected to form an enlarged dataset.
arXiv Detail & Related papers (2020-04-01T17:14:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.