論文の概要: TripCast: Pre-training of Masked 2D Transformers for Trip Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2410.18612v1
- Date: Thu, 24 Oct 2024 10:08:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-25 12:51:06.168056
- Title: TripCast: Pre-training of Masked 2D Transformers for Trip Time Series Forecasting
- Title(参考訳): TripCast: トリプ時系列予測のためのマスク付き2Dトランスの事前学習
- Authors: Yuhua Liao, Zetian Wang, Peng Wei, Qiangqiang Nie, Zhenhua Zhang,
- Abstract要約: TripCastは、トリップタイムシリーズを2Dデータとして扱い、マスキングと再構築プロセスを通じて表現を学ぶ。
TripCastは、ドメイン内の予測シナリオにおいて、他の最先端のベースラインを上回っている。
- 参考スコア(独自算出の注目度): 2.47833893186296
- License:
- Abstract: Deep learning and pre-trained models have shown great success in time series forecasting. However, in the tourism industry, time series data often exhibit a leading time property, presenting a 2D structure. This introduces unique challenges for forecasting in this sector. In this study, we propose a novel modelling paradigm, TripCast, which treats trip time series as 2D data and learns representations through masking and reconstruction processes. Pre-trained on large-scale real-world data, TripCast notably outperforms other state-of-the-art baselines in in-domain forecasting scenarios and demonstrates strong scalability and transferability in out-domain forecasting scenarios.
- Abstract(参考訳): ディープラーニングと事前訓練されたモデルは、時系列予測において大きな成功を収めている。
しかし、観光業界では、時系列データはしばしば先行する時間的特性を示し、2次元構造を提示する。
これにより、この分野における予測に固有の課題がもたらされる。
本研究では,旅行時間系列を2次元データとして扱い,マスクや再構成プロセスを通じて表現を学習する新しいモデリングパラダイムTripCastを提案する。
大規模な実世界のデータに基づいて事前トレーニングされたTripCastは、ドメイン内予測シナリオにおける他の最先端のベースラインよりも優れており、ドメイン外予測シナリオにおける強力なスケーラビリティと転送性を示している。
関連論文リスト
- Moirai-MoE: Empowering Time Series Foundation Models with Sparse Mixture of Experts [103.725112190618]
本稿では,単一入出力プロジェクション層を用いたMoirai-MoEを紹介するとともに,多種多様な時系列パターンのモデリングを専門家の疎結合に委ねる。
39のデータセットに対する大規模な実験は、既存の基盤モデルよりも、分配シナリオとゼロショットシナリオの両方において、Moirai-MoEの優位性を実証している。
論文 参考訳(メタデータ) (2024-10-14T13:01:11Z) - Predicting Long-horizon Futures by Conditioning on Geometry and Time [49.86180975196375]
我々は,過去を前提とした将来のセンサ観測の課題を探求する。
マルチモーダリティを扱える画像拡散モデルの大規模事前学習を活用する。
我々は、屋内と屋外のシーンにまたがる多様なビデオのセットについて、ビデオ予測のためのベンチマークを作成する。
論文 参考訳(メタデータ) (2024-04-17T16:56:31Z) - Generative Pretrained Hierarchical Transformer for Time Series Forecasting [3.739587363053192]
予測のための新しい生成事前学習型階層型トランスフォーマーアーキテクチャ,textbfGPHTを提案する。
主流の自己教師付き事前学習モデルと教師付きモデルを用いて,8つのデータセット上で十分な実験を行う。
その結果、GPHTは、従来の長期予測タスクにおいて、様々な微調整およびゼロ/フェーショット学習設定のベースラインモデルを上回ることを示した。
論文 参考訳(メタデータ) (2024-02-26T11:54:54Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
マスク型ユニバーサル時系列予測変換器(モイライ)について述べる。
Moiraiは、新たに導入された大規模オープンタイムシリーズアーカイブ(LOTSA)で訓練されており、9つのドメインで27億以上の観測が行われた。
Moiraiは、フルショットモデルと比較してゼロショットの予測器として、競争力や優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-02-04T20:00:45Z) - Timer: Generative Pre-trained Transformers Are Large Time Series Models [83.03091523806668]
本稿では,大規模時系列モデル(LTSM)の早期開発を目的とした。
事前トレーニング中に、最大10億のタイムポイントを持つ大規模なデータセットをキュレートします。
多様なアプリケーションのニーズを満たすため,予測,計算,時系列の異常検出を統一的な生成タスクに変換する。
論文 参考訳(メタデータ) (2024-02-04T06:55:55Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
長期の都市移動予測は、都市施設やサービスの効果的管理において重要な役割を担っている。
伝統的に、都市移動データはビデオとして構成され、経度と緯度を基本的なピクセルとして扱う。
本研究では,都市におけるモビリティ予測の新たな視点について紹介する。
都市移動データを従来のビデオデータとして単純化するのではなく、複雑な時系列と見なす。
論文 参考訳(メタデータ) (2023-12-04T07:39:05Z) - Deep Double Descent for Time Series Forecasting: Avoiding Undertrained
Models [1.7243216387069678]
公開時系列データセットでトレーニングしたトランスフォーマーモデルの深度二重降下について検討する。
72ベンチマークの70%近くで時系列時系列の予測を行う。
これは、文献の多くのモデルが未解決の可能性を秘めていることを示唆している。
論文 参考訳(メタデータ) (2023-11-02T17:55:41Z) - Pushing the Limits of Pre-training for Time Series Forecasting in the
CloudOps Domain [54.67888148566323]
クラウドオペレーションドメインから,大規模時系列予測データセットを3つ導入する。
強力なゼロショットベースラインであり、モデルとデータセットサイズの両方において、さらなるスケーリングの恩恵を受けています。
これらのデータセットと結果を取得することは、古典的および深層学習のベースラインを事前訓練された方法と比較した総合的なベンチマーク結果の集合である。
論文 参考訳(メタデータ) (2023-10-08T08:09:51Z) - Deep Transformer Models for Time Series Forecasting: The Influenza
Prevalence Case [2.997238772148965]
時系列データは、多くの科学と工学の分野で広く使われている。
本稿では,トランスフォーマーに基づく機械学習モデルを用いた時系列予測の新しい手法を提案する。
提案手法により得られた予測結果は,最先端技術と良好に比較できることを示す。
論文 参考訳(メタデータ) (2020-01-23T00:22:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。