Moving Object Segmentation in Point Cloud Data using Hidden Markov Models
- URL: http://arxiv.org/abs/2410.18638v1
- Date: Thu, 24 Oct 2024 10:56:02 GMT
- Title: Moving Object Segmentation in Point Cloud Data using Hidden Markov Models
- Authors: Vedant Bhandari, Jasmin James, Tyson Phillips, P. Ross McAree,
- Abstract summary: We propose a robust learning-free approach to segment moving objects in point cloud data.
The proposed approach is tested on benchmark datasets and consistently performs better than or as well as state-of-the-art methods.
- Score: 0.0
- License:
- Abstract: Autonomous agents require the capability to identify dynamic objects in their environment for safe planning and navigation. Incomplete and erroneous dynamic detections jeopardize the agent's ability to accomplish its task. Dynamic detection is a challenging problem due to the numerous sources of uncertainty inherent in the problem's inputs and the wide variety of applications, which often lead to use-case-tailored solutions. We propose a robust learning-free approach to segment moving objects in point cloud data. The foundation of the approach lies in modelling each voxel using a hidden Markov model (HMM), and probabilistically integrating beliefs into a map using an HMM filter. The proposed approach is tested on benchmark datasets and consistently performs better than or as well as state-of-the-art methods with strong generalized performance across sensor characteristics and environments. The approach is open-sourced at https://github.com/vb44/HMM-MOS.
Related papers
- Oriented Tiny Object Detection: A Dataset, Benchmark, and Dynamic Unbiased Learning [51.170479006249195]
We introduce a new dataset, benchmark, and a dynamic coarse-to-fine learning scheme in this study.
Our proposed dataset, AI-TOD-R, features the smallest object sizes among all oriented object detection datasets.
We present a benchmark spanning a broad range of detection paradigms, including both fully-supervised and label-efficient approaches.
arXiv Detail & Related papers (2024-12-16T09:14:32Z) - MARS: Multimodal Active Robotic Sensing for Articulated Characterization [6.69660410213287]
We introduce MARS, a novel framework for articulated object characterization.
It features a multi-modal fusion module utilizing multi-scale RGB features to enhance point cloud features.
Our method effectively generalizes to real-world articulated objects, enhancing robot interactions.
arXiv Detail & Related papers (2024-07-01T11:32:39Z) - ERASOR++: Height Coding Plus Egocentric Ratio Based Dynamic Object
Removal for Static Point Cloud Mapping [5.056432027978704]
Dynamic objects in 3D point cloud maps can introduce map distortion and long traces.
We propose ERASOR++, an enhanced approach based on the Egocentric Ratio of Pseudo Occupancy for effective dynamic object removal.
Our approach demonstrates superior performance in terms of precision and efficiency compared to existing methods.
arXiv Detail & Related papers (2024-03-08T03:45:04Z) - DOZE: A Dataset for Open-Vocabulary Zero-Shot Object Navigation in Dynamic Environments [28.23284296418962]
Zero-Shot Object Navigation (ZSON) requires agents to autonomously locate and approach unseen objects in unfamiliar environments.
Existing datasets for developing ZSON algorithms lack consideration of dynamic obstacles, object diversity, and scene texts.
We propose a dataset for Open-Vocabulary Zero-Shot Object Navigation in Dynamic Environments (DOZE)
DOZE comprises ten high-fidelity 3D scenes with over 18k tasks, aiming to mimic complex, dynamic real-world scenarios.
arXiv Detail & Related papers (2024-02-29T10:03:57Z) - Open World Object Detection in the Era of Foundation Models [53.683963161370585]
We introduce a new benchmark that includes five real-world application-driven datasets.
We introduce a novel method, Foundation Object detection Model for the Open world, or FOMO, which identifies unknown objects based on their shared attributes with the base known objects.
arXiv Detail & Related papers (2023-12-10T03:56:06Z) - Video Anomaly Detection by Estimating Likelihood of Representations [21.879366166261228]
Video anomaly is a challenging task because it involves solving many sub-tasks such as motion representation, object localization and action recognition.
Traditionally, solutions to this task have focused on the mapping between video frames and their low-dimensional features, while ignoring the spatial connections of those features.
Recent solutions focus on analyzing these spatial connections by using hard clustering techniques, such as K-Means, or applying neural networks to map latent features to a general understanding.
In order to solve video anomaly in the latent feature space, we propose a deep probabilistic model to transfer this task into a density estimation problem.
arXiv Detail & Related papers (2020-12-02T19:16:22Z) - POMP: Pomcp-based Online Motion Planning for active visual search in
indoor environments [89.43830036483901]
We focus on the problem of learning an optimal policy for Active Visual Search (AVS) of objects in known indoor environments with an online setup.
Our POMP method uses as input the current pose of an agent and a RGB-D frame.
We validate our method on the publicly available AVD benchmark, achieving an average success rate of 0.76 with an average path length of 17.1.
arXiv Detail & Related papers (2020-09-17T08:23:50Z) - SoDA: Multi-Object Tracking with Soft Data Association [75.39833486073597]
Multi-object tracking (MOT) is a prerequisite for a safe deployment of self-driving cars.
We propose a novel approach to MOT that uses attention to compute track embeddings that encode dependencies between observed objects.
arXiv Detail & Related papers (2020-08-18T03:40:25Z) - Hierarchical Dynamic Filtering Network for RGB-D Salient Object
Detection [91.43066633305662]
The main purpose of RGB-D salient object detection (SOD) is how to better integrate and utilize cross-modal fusion information.
In this paper, we explore these issues from a new perspective.
We implement a kind of more flexible and efficient multi-scale cross-modal feature processing.
arXiv Detail & Related papers (2020-07-13T07:59:55Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoT devices can hardly afford complex deep neural networks (DNN) models, and offloading anomaly detection tasks to the cloud incurs long delay.
We propose and build a demo for an adaptive anomaly detection approach for distributed hierarchical edge computing (HEC) systems.
We show that our proposed approach significantly reduces detection delay without sacrificing accuracy, as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-04-15T06:13:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.