論文の概要: Retrieval-Augmented Diffusion Models for Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2410.18712v1
- Date: Thu, 24 Oct 2024 13:14:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-25 12:49:13.809844
- Title: Retrieval-Augmented Diffusion Models for Time Series Forecasting
- Title(参考訳): 時系列予測のための検索拡張拡散モデル
- Authors: Jingwei Liu, Ling Yang, Hongyan Li, Shenda Hong,
- Abstract要約: 検索時間拡張拡散モデル(RATD)を提案する。
RATDは埋め込みベースの検索プロセスと参照誘導拡散モデルという2つの部分から構成される。
当社のアプローチでは,データベース内の意味のあるサンプルを活用することで,サンプリングを支援し,データセットの利用を最大化することが可能です。
- 参考スコア(独自算出の注目度): 19.251274915003265
- License:
- Abstract: While time series diffusion models have received considerable focus from many recent works, the performance of existing models remains highly unstable. Factors limiting time series diffusion models include insufficient time series datasets and the absence of guidance. To address these limitations, we propose a Retrieval- Augmented Time series Diffusion model (RATD). The framework of RATD consists of two parts: an embedding-based retrieval process and a reference-guided diffusion model. In the first part, RATD retrieves the time series that are most relevant to historical time series from the database as references. The references are utilized to guide the denoising process in the second part. Our approach allows leveraging meaningful samples within the database to aid in sampling, thus maximizing the utilization of datasets. Meanwhile, this reference-guided mechanism also compensates for the deficiencies of existing time series diffusion models in terms of guidance. Experiments and visualizations on multiple datasets demonstrate the effectiveness of our approach, particularly in complicated prediction tasks.
- Abstract(参考訳): 時系列拡散モデルは多くの最近の研究からかなり注目されているが、既存のモデルの性能は非常に不安定である。
時系列拡散モデルを制限する要因には、時系列データセットの不足とガイダンスの欠如がある。
これらの制約に対処するため,Retrieval-Augmented Time Series Diffusion Model (RATD)を提案する。
RATDのフレームワークは、埋め込みベースの検索プロセスと参照誘導拡散モデルという2つの部分から構成される。
最初の部分では、RATDはデータベースから履歴時系列に最も関係のある時系列を参照として検索する。
参照を使用して、第2部における復調過程をガイドする。
当社のアプローチでは,データベース内の意味のあるサンプルを活用することで,サンプリングを支援し,データセットの利用を最大化することが可能です。
一方、この基準誘導機構は、ガイダンスの観点から既存の時系列拡散モデルの欠陥を補う。
複数のデータセットの実験と可視化は、特に複雑な予測タスクにおいて、我々のアプローチの有効性を示す。
関連論文リスト
- Moirai-MoE: Empowering Time Series Foundation Models with Sparse Mixture of Experts [103.725112190618]
本稿では,単一入出力プロジェクション層を用いたMoirai-MoEを紹介するとともに,多種多様な時系列パターンのモデリングを専門家の疎結合に委ねる。
39のデータセットに対する大規模な実験は、既存の基盤モデルよりも、分配シナリオとゼロショットシナリオの両方において、Moirai-MoEの優位性を実証している。
論文 参考訳(メタデータ) (2024-10-14T13:01:11Z) - A Survey on Diffusion Models for Time Series and Spatio-Temporal Data [92.1255811066468]
時系列およびS時間データにおける拡散モデルの使用について概観し、それらをモデル、タスクタイプ、データモダリティ、実用的なアプリケーションドメインで分類する。
我々は拡散モデルを無条件型と条件付き型に分類し、時系列とS時間データを別々に議論する。
本調査は,医療,レコメンデーション,気候,エネルギー,オーディオ,交通など,さまざまな分野の応用を幅広くカバーしている。
論文 参考訳(メタデータ) (2024-04-29T17:19:40Z) - MG-TSD: Multi-Granularity Time Series Diffusion Models with Guided Learning Process [26.661721555671626]
本稿では,最先端の予測性能を実現する新しい多粒度時系列(MG-TSD)モデルを提案する。
われわれのアプローチは外部データに頼らず、様々な領域にまたがって汎用的で適用可能である。
論文 参考訳(メタデータ) (2024-03-09T01:15:03Z) - PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from
the perspective of partial differential equations [49.80959046861793]
本稿では,ニューラルPDEソルバの原理に着想を得た新しいLMTFモデルであるPDETimeを提案する。
7つの異なる時間的実世界のLMTFデータセットを用いた実験により、PDETimeがデータ固有の性質に効果的に適応できることが判明した。
論文 参考訳(メタデータ) (2024-02-25T17:39:44Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Non-autoregressive Conditional Diffusion Models for Time Series
Prediction [3.9722979176564763]
TimeDiffは、高品質な時系列予測を実現する非自己回帰拡散モデルである。
我々はTimeDiffが既存の時系列拡散モデルより一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-06-08T08:53:59Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
時系列予測は多くのアプリケーションにおいて非常に重要な課題である。
実世界の時系列データが短時間に記録されることが一般的であり、これはディープモデルと限られたノイズのある時系列との間に大きなギャップをもたらす。
本稿では,生成モデルを用いた時系列予測問題に対処し,拡散,雑音,ゆがみを備えた双方向変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2023-01-08T12:20:46Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - PIETS: Parallelised Irregularity Encoders for Forecasting with
Heterogeneous Time-Series [5.911865723926626]
マルチソースデータセットの不均一性と不規則性は時系列解析において重要な課題となる。
本研究では、異種時系列をモデル化するための新しいアーキテクチャ、PIETSを設計する。
PIETSは異種時間データを効果的にモデル化し、予測タスクにおける他の最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-09-30T20:01:19Z) - Multivariate Time-series Anomaly Detection via Graph Attention Network [27.12694738711663]
多変量時系列の異常検出は、データマイニング研究と産業応用の両方において非常に重要である。
1つの大きな制限は、異なる時系列間の関係を明示的に捉えないことである。
この問題に対処するために,多変量時系列異常検出のための新しい自己教師型フレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-04T07:46:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。