Cellpose+, a morphological analysis tool for feature extraction of stained cell images
- URL: http://arxiv.org/abs/2410.18738v1
- Date: Thu, 24 Oct 2024 13:41:40 GMT
- Title: Cellpose+, a morphological analysis tool for feature extraction of stained cell images
- Authors: Israel A. Huaman, Fares D. E. Ghorabe, Sofya S. Chumakova, Alexandra A. Pisarenko, Alexey E. Dudaev, Tatiana G. Volova, Galina A. Ryltseva, Sviatlana A. Ulasevich, Ekaterina I. Shishatskaya, Ekaterina V. Skorb, Pavel S. Zun,
- Abstract summary: In this paper, we extend the applications of Cellpose, a state-of-the-art cell segmentation framework, with feature extraction capabilities.
We also introduce a dataset of DAPI and FITC stained cells to which our new method is applied.
- Score: 31.874825130479174
- License:
- Abstract: Advanced image segmentation and processing tools present an opportunity to study cell processes and their dynamics. However, image analysis is often routine and time-consuming. Nowadays, alternative data-driven approaches using deep learning are potentially offering automatized, accurate, and fast image analysis. In this paper, we extend the applications of Cellpose, a state-of-the-art cell segmentation framework, with feature extraction capabilities to assess morphological characteristics. We also introduce a dataset of DAPI and FITC stained cells to which our new method is applied.
Related papers
- Morphological Profiling for Drug Discovery in the Era of Deep Learning [13.307277432389496]
We provide a comprehensive overview of the recent advances in the field of morphological profiling.
We place a particular emphasis on the application of deep learning in this pipeline.
arXiv Detail & Related papers (2023-12-13T05:08:32Z) - Multi-stream Cell Segmentation with Low-level Cues for Multi-modality
Images [66.79688768141814]
We develop an automatic cell classification pipeline to label microscopy images.
We then train a classification model based on the category labels.
We deploy two types of segmentation models to segment cells with roundish and irregular shapes.
arXiv Detail & Related papers (2023-10-22T08:11:08Z) - AMIGO: Sparse Multi-Modal Graph Transformer with Shared-Context
Processing for Representation Learning of Giga-pixel Images [53.29794593104923]
We present a novel concept of shared-context processing for whole slide histopathology images.
AMIGO uses the celluar graph within the tissue to provide a single representation for a patient.
We show that our model is strongly robust to missing information to an extent that it can achieve the same performance with as low as 20% of the data.
arXiv Detail & Related papers (2023-03-01T23:37:45Z) - Deep Learning Enabled Time-Lapse 3D Cell Analysis [7.094247258573337]
This paper presents a method for time-lapse 3D cell analysis.
We consider the problem of accurately localizing and quantitatively analyzing sub-cellular features.
The code is available on Github and the method is available as a service through the BisQue portal.
arXiv Detail & Related papers (2022-08-17T00:07:25Z) - Learning multi-scale functional representations of proteins from
single-cell microscopy data [77.34726150561087]
We show that simple convolutional networks trained on localization classification can learn protein representations that encapsulate diverse functional information.
We also propose a robust evaluation strategy to assess quality of protein representations across different scales of biological function.
arXiv Detail & Related papers (2022-05-24T00:00:07Z) - From augmented microscopy to the topological transformer: a new approach
in cell image analysis for Alzheimer's research [0.0]
Cell image analysis is crucial in Alzheimer's research to detect the presence of A$beta$ protein inhibiting cell function.
We first found Unet is most suitable in augmented microscopy by comparing performance in multi-class semantics segmentation.
We develop the augmented microscopy method to capture nuclei in a brightfield image and the transformer using Unet model to convert an input image into a sequence of topological information.
arXiv Detail & Related papers (2021-08-03T16:59:33Z) - Enforcing Morphological Information in Fully Convolutional Networks to
Improve Cell Instance Segmentation in Fluorescence Microscopy Images [1.408123603417833]
We propose a novel cell instance segmentation approach based on the well-known U-Net architecture.
To enforce the learning of morphological information per pixel, a deep distance transformer (DDT) acts as a back-bone model.
The obtained results suggest a performance boost over traditional U-Net architectures.
arXiv Detail & Related papers (2021-06-10T15:54:38Z) - Towards Interpretable Attention Networks for Cervical Cancer Analysis [24.916577293892182]
We evaluate various state-of-the-art deep learning models for the classification of images of multiple cervical cells.
We show the effectiveness of the residual channel attention model for extracting important features from a group of cells.
It also provides interpretable models to address the classification of cervical cells.
arXiv Detail & Related papers (2021-05-27T13:28:24Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
coarse parametrisation in propagation distance, position errors and partial coherence frequently menaces the experiment viability.
A modern Deep Learning framework is used to correct autonomously the setup incoherences, thus improving the quality of a ptychography reconstruction.
We tested our system on both synthetic datasets and also on real data acquired at the TwinMic beamline of the Elettra synchrotron facility.
arXiv Detail & Related papers (2021-05-18T10:15:17Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.