Towards Task Sampler Learning for Meta-Learning
- URL: http://arxiv.org/abs/2307.08924v4
- Date: Sun, 2 Jun 2024 08:52:13 GMT
- Title: Towards Task Sampler Learning for Meta-Learning
- Authors: Jingyao Wang, Wenwen Qiang, Xingzhe Su, Changwen Zheng, Fuchun Sun, Hui Xiong,
- Abstract summary: Meta-learning aims to learn general knowledge with diverse training tasks conducted from limited data, and then transfer it to new tasks.
It is commonly believed that increasing task diversity will enhance the generalization ability of meta-learning models.
This paper challenges this view through empirical and theoretical analysis.
- Score: 37.02030832662183
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Meta-learning aims to learn general knowledge with diverse training tasks conducted from limited data, and then transfer it to new tasks. It is commonly believed that increasing task diversity will enhance the generalization ability of meta-learning models. However, this paper challenges this view through empirical and theoretical analysis. We obtain three conclusions: (i) there is no universal task sampling strategy that can guarantee the optimal performance of meta-learning models; (ii) over-constraining task diversity may incur the risk of under-fitting or over-fitting during training; and (iii) the generalization performance of meta-learning models are affected by task diversity, task entropy, and task difficulty. Based on this insight, we design a novel task sampler, called Adaptive Sampler (ASr). ASr is a plug-and-play module that can be integrated into any meta-learning framework. It dynamically adjusts task weights according to task diversity, task entropy, and task difficulty, thereby obtaining the optimal probability distribution for meta-training tasks. Finally, we conduct experiments on a series of benchmark datasets across various scenarios, and the results demonstrate that ASr has clear advantages.
Related papers
- Meta-Learning with Heterogeneous Tasks [42.695853959923625]
Heterogeneous Tasks Robust Meta-learning (HeTRoM)
An efficient iterative optimization algorithm based on bi-level optimization.
Results demonstrate that our method provides flexibility, enabling users to adapt to diverse task settings.
arXiv Detail & Related papers (2024-10-24T16:32:23Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML) aims to efficiently learn new tasks by leveraging multiple pre-trained models without requiring their original training data.
For the first time, we reveal two major challenges hindering their practical deployments: Task-Distribution Shift ( TDS) and Task-Distribution Corruption (TDC)
arXiv Detail & Related papers (2023-11-23T15:46:54Z) - MetaModulation: Learning Variational Feature Hierarchies for Few-Shot
Learning with Fewer Tasks [63.016244188951696]
We propose a method for few-shot learning with fewer tasks, which is by metaulation.
We modify parameters at various batch levels to increase the meta-training tasks.
We also introduce learning variational feature hierarchies by incorporating the variationalulation.
arXiv Detail & Related papers (2023-05-17T15:47:47Z) - Meta-Reinforcement Learning Based on Self-Supervised Task Representation
Learning [23.45043290237396]
MoSS is a context-based Meta-reinforcement learning algorithm based on Self-Supervised task representation learning.
On MuJoCo and Meta-World benchmarks, MoSS outperforms prior in terms of performance, sample efficiency (3-50x faster), adaptation efficiency, and generalization.
arXiv Detail & Related papers (2023-04-29T15:46:19Z) - Learning to generate imaginary tasks for improving generalization in
meta-learning [12.635773307074022]
The success of meta-learning on existing benchmarks is predicated on the assumption that the distribution of meta-training tasks covers meta-testing tasks.
Recent solutions have pursued augmentation of meta-training tasks, while it is still an open question to generate both correct and sufficiently imaginary tasks.
In this paper, we seek an approach that up-samples meta-training tasks from the task representation via a task up-sampling network. Besides, the resulting approach named Adversarial Task Up-sampling (ATU) suffices to generate tasks that can maximally contribute to the latest meta-learner by maximizing an adversarial loss.
arXiv Detail & Related papers (2022-06-09T08:21:05Z) - The Effect of Diversity in Meta-Learning [79.56118674435844]
Few-shot learning aims to learn representations that can tackle novel tasks given a small number of examples.
Recent studies show that task distribution plays a vital role in the model's performance.
We study different task distributions on a myriad of models and datasets to evaluate the effect of task diversity on meta-learning algorithms.
arXiv Detail & Related papers (2022-01-27T19:39:07Z) - Meta-learning with an Adaptive Task Scheduler [93.63502984214918]
Existing meta-learning algorithms randomly sample meta-training tasks with a uniform probability.
It is likely that tasks are detrimental with noise or imbalanced given a limited number of meta-training tasks.
We propose an adaptive task scheduler (ATS) for the meta-training process.
arXiv Detail & Related papers (2021-10-26T22:16:35Z) - Meta-Learning with Fewer Tasks through Task Interpolation [67.03769747726666]
Current meta-learning algorithms require a large number of meta-training tasks, which may not be accessible in real-world scenarios.
By meta-learning with task gradient (MLTI), our approach effectively generates additional tasks by randomly sampling a pair of tasks and interpolating the corresponding features and labels.
Empirically, in our experiments on eight datasets from diverse domains, we find that the proposed general MLTI framework is compatible with representative meta-learning algorithms and consistently outperforms other state-of-the-art strategies.
arXiv Detail & Related papers (2021-06-04T20:15:34Z) - Adaptive Task Sampling for Meta-Learning [79.61146834134459]
Key idea of meta-learning for few-shot classification is to mimic the few-shot situations faced at test time.
We propose an adaptive task sampling method to improve the generalization performance.
arXiv Detail & Related papers (2020-07-17T03:15:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.