Learning $k$-body Hamiltonians via compressed sensing
- URL: http://arxiv.org/abs/2410.18928v1
- Date: Thu, 24 Oct 2024 17:16:19 GMT
- Title: Learning $k$-body Hamiltonians via compressed sensing
- Authors: Muzhou Ma, Steven T. Flammia, John Preskill, Yu Tong,
- Abstract summary: We study the problem of learning a $k$-body Hamiltonian with $M$ unknown Pauli terms that are not necessarily geometrically local.
We propose a protocol that learns the Hamiltonian to precision $epsilon$ with total evolution time.
- Score: 0.5867838258848337
- License:
- Abstract: We study the problem of learning a $k$-body Hamiltonian with $M$ unknown Pauli terms that are not necessarily geometrically local. We propose a protocol that learns the Hamiltonian to precision $\epsilon$ with total evolution time ${\mathcal{O}}(M^{1/2+1/p}/\epsilon)$ up to logarithmic factors, where the error is quantified by the $\ell^p$-distance between Pauli coefficients. Our learning protocol uses only single-qubit control operations and a GHZ state initial state, is non-adaptive, is robust against SPAM errors, and performs well even if $M$ and $k$ are not precisely known in advance or if the Hamiltonian is not exactly $M$-sparse. Methods from the classical theory of compressed sensing are used for efficiently identifying the $M$ terms in the Hamiltonian from among all possible $k$-body Pauli operators. We also provide a lower bound on the total evolution time needed in this learning task, and we discuss the operational interpretations of the $\ell^1$ and $\ell^2$ error metrics. In contrast to previous works, our learning protocol requires neither geometric locality nor any other relaxed locality conditions.
Related papers
- Testing and learning structured quantum Hamiltonians [4.137418441736385]
We consider the problems of testing and learning an unknown $n$qubit Hamiltonian $H$ from queries to its evolution operator $e-iHt$ under the normalized Frobenius norm.
arXiv Detail & Related papers (2024-10-31T17:54:13Z) - Learning the structure of any Hamiltonian from minimal assumptions [2.810160553339817]
We study the problem of learning an unknown quantum many-body Hamiltonian $H$ from black-box queries to its time evolution.
We present efficient algorithms to learn any $n$-qubit Hamiltonian, assuming only a bound on the number of Hamiltonian terms.
arXiv Detail & Related papers (2024-10-29T00:43:33Z) - Structure learning of Hamiltonians from real-time evolution [22.397920564324973]
We present a new, general approach to Hamiltonian learning that not only solves the challenging structure learning variant, but also resolves other open questions in the area.
Our algorithm recovers the Hamiltonian to $varepsilon$ error with total evolution time $O(log (n)/varepsilon)$, and has the following appealing properties.
As an application, we can also learn Hamiltonians exhibiting power-law decay up to accuracy $varepsilon$ with total evolution time beating the standard limit of $1/varepsilon2$.
arXiv Detail & Related papers (2024-04-30T18:00:00Z) - Simple algorithms to test and learn local Hamiltonians [0.0]
We consider the problems of testing and learning an $n$-qubit $k$-local Hamiltonian from queries to its evolution operator.
For learning up to error $epsilon$, we show that $exp(O(k2+klog(1/epsilon))$ queries suffice.
arXiv Detail & Related papers (2024-04-09T13:08:28Z) - Learning many-body Hamiltonians with Heisenberg-limited scaling [3.460138063155115]
We propose the first algorithm to achieve the Heisenberg limit for learning interacting $N$-qubit local Hamiltonian.
After a total evolution time of $mathcalO(epsilon-1)$, the proposed algorithm can efficiently estimate any parameter in the $N$-qubit Hamiltonian to $epsilon$-error with high probability.
arXiv Detail & Related papers (2022-10-06T16:30:51Z) - Cryptographic Hardness of Learning Halfspaces with Massart Noise [59.8587499110224]
We study the complexity of PAC learning halfspaces in the presence of Massart noise.
We show that no-time Massart halfspace learners can achieve error better than $Omega(eta)$, even if the optimal 0-1 error is small.
arXiv Detail & Related papers (2022-07-28T17:50:53Z) - Threshold Phenomena in Learning Halfspaces with Massart Noise [56.01192577666607]
We study the problem of PAC learning halfspaces on $mathbbRd$ with Massart noise under Gaussian marginals.
Our results qualitatively characterize the complexity of learning halfspaces in the Massart model.
arXiv Detail & Related papers (2021-08-19T16:16:48Z) - Hardness of Learning Halfspaces with Massart Noise [56.98280399449707]
We study the complexity of PAC learning halfspaces in the presence of Massart (bounded) noise.
We show that there an exponential gap between the information-theoretically optimal error and the best error that can be achieved by a SQ algorithm.
arXiv Detail & Related papers (2020-12-17T16:43:11Z) - On Distributed Differential Privacy and Counting Distinct Elements [52.701425652208734]
We study the setup where each of $n$ users holds an element from a discrete set.
The goal is to count the number of distinct elements across all users.
arXiv Detail & Related papers (2020-09-21T04:13:34Z) - An Optimal Separation of Randomized and Quantum Query Complexity [67.19751155411075]
We prove that for every decision tree, the absolute values of the Fourier coefficients of a given order $ellsqrtbinomdell (1+log n)ell-1,$ sum to at most $cellsqrtbinomdell (1+log n)ell-1,$ where $n$ is the number of variables, $d$ is the tree depth, and $c>0$ is an absolute constant.
arXiv Detail & Related papers (2020-08-24T06:50:57Z) - Model-Free Reinforcement Learning: from Clipped Pseudo-Regret to Sample
Complexity [59.34067736545355]
Given an MDP with $S$ states, $A$ actions, the discount factor $gamma in (0,1)$, and an approximation threshold $epsilon > 0$, we provide a model-free algorithm to learn an $epsilon$-optimal policy.
For small enough $epsilon$, we show an improved algorithm with sample complexity.
arXiv Detail & Related papers (2020-06-06T13:34:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.