Simple algorithms to test and learn local Hamiltonians
- URL: http://arxiv.org/abs/2404.06282v1
- Date: Tue, 9 Apr 2024 13:08:28 GMT
- Title: Simple algorithms to test and learn local Hamiltonians
- Authors: Francisco Escudero GutiƩrrez,
- Abstract summary: We consider the problems of testing and learning an $n$-qubit $k$-local Hamiltonian from queries to its evolution operator.
For learning up to error $epsilon$, we show that $exp(O(k2+klog(1/epsilon))$ queries suffice.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the problems of testing and learning an $n$-qubit $k$-local Hamiltonian from queries to its evolution operator with respect the 2-norm of the Pauli spectrum, or equivalently, the normalized Frobenius norm. For testing whether a Hamiltonian is $\epsilon_1$-close to $k$-local or $\epsilon_2$-far from $k$-local, we show that $O(1/(\epsilon_2-\epsilon_1)^{8})$ queries suffice. This solves two questions posed in a recent work by Bluhm, Caro and Oufkir. For learning up to error $\epsilon$, we show that $\exp(O(k^2+k\log(1/\epsilon)))$ queries suffice. Our proofs are simple, concise and based on Pauli-analytic techniques.
Related papers
- Testing and learning structured quantum Hamiltonians [4.137418441736385]
We consider the problems of testing and learning an unknown $n$qubit Hamiltonian $H$ from queries to its evolution operator $e-iHt$ under the normalized Frobenius norm.
arXiv Detail & Related papers (2024-10-31T17:54:13Z) - Learning $k$-body Hamiltonians via compressed sensing [0.5867838258848337]
We study the problem of learning a $k$-body Hamiltonian with $M$ unknown Pauli terms that are not necessarily geometrically local.
We propose a protocol that learns the Hamiltonian to precision $epsilon$ with total evolution time.
arXiv Detail & Related papers (2024-10-24T17:16:19Z) - Learning low-degree quantum objects [5.2373060530454625]
We show how to learn low-degree quantum objects up to $varepsilon$-error in $ell$-distance.
Our main technical contributions are new Bohnenblust-Hille inequalities for quantum channels and completely boundedpolynomials.
arXiv Detail & Related papers (2024-05-17T17:36:44Z) - Active Sampling for Linear Regression Beyond the $\ell_2$ Norm [70.49273459706546]
We study active sampling algorithms for linear regression, which aim to query only a small number of entries of a target vector.
We show that this dependence on $d$ is optimal, up to logarithmic factors.
We also provide the first total sensitivity upper bound $O(dmax1,p/2log2 n)$ for loss functions with at most degree $p$ growth.
arXiv Detail & Related papers (2021-11-09T00:20:01Z) - Learning low-degree functions from a logarithmic number of random
queries [77.34726150561087]
We prove that for any integer $ninmathbbN$, $din1,ldots,n$ and any $varepsilon,deltain(0,1)$, a bounded function $f:-1,1nto[-1,1]$ of degree at most $d$ can be learned.
arXiv Detail & Related papers (2021-09-21T13:19:04Z) - Threshold Phenomena in Learning Halfspaces with Massart Noise [56.01192577666607]
We study the problem of PAC learning halfspaces on $mathbbRd$ with Massart noise under Gaussian marginals.
Our results qualitatively characterize the complexity of learning halfspaces in the Massart model.
arXiv Detail & Related papers (2021-08-19T16:16:48Z) - Optimal learning of quantum Hamiltonians from high-temperature Gibbs
states [0.9453554184019105]
We show how to learn the coefficients of a Hamiltonian to error $varepsilon$ with sample complexity $S = O(log N/(betavarepsilon)2)$ and time linear in the sample size, $O(S N)$.
In the appendix, we show virtually the same algorithm can be used to learn $H$ from a real-time evolution unitary $e-it Hilon in a small $t regime with similar sample and time complexity.
arXiv Detail & Related papers (2021-08-10T18:00:49Z) - The Price of Tolerance in Distribution Testing [31.10049510641336]
We show the sample complexity to be [fracsqrtnvarepsilon2 + fracnlog n cdotmaxleftfracvarepsilon2, providing a smooth tradeoff between the two previously known cases.
We also provide a similar characterization for the problem of tolerant equivalence testing, where both $p$ and $q$ are unknown.
arXiv Detail & Related papers (2021-06-25T03:59:42Z) - An Optimal Separation of Randomized and Quantum Query Complexity [67.19751155411075]
We prove that for every decision tree, the absolute values of the Fourier coefficients of a given order $ellsqrtbinomdell (1+log n)ell-1,$ sum to at most $cellsqrtbinomdell (1+log n)ell-1,$ where $n$ is the number of variables, $d$ is the tree depth, and $c>0$ is an absolute constant.
arXiv Detail & Related papers (2020-08-24T06:50:57Z) - Model-Free Reinforcement Learning: from Clipped Pseudo-Regret to Sample
Complexity [59.34067736545355]
Given an MDP with $S$ states, $A$ actions, the discount factor $gamma in (0,1)$, and an approximation threshold $epsilon > 0$, we provide a model-free algorithm to learn an $epsilon$-optimal policy.
For small enough $epsilon$, we show an improved algorithm with sample complexity.
arXiv Detail & Related papers (2020-06-06T13:34:41Z) - Fixed-Support Wasserstein Barycenters: Computational Hardness and Fast
Algorithm [100.11971836788437]
We study the fixed-support Wasserstein barycenter problem (FS-WBP)
We develop a provably fast textitdeterministic variant of the celebrated iterative Bregman projection (IBP) algorithm, named textscFastIBP.
arXiv Detail & Related papers (2020-02-12T03:40:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.