3D-Adapter: Geometry-Consistent Multi-View Diffusion for High-Quality 3D Generation
- URL: http://arxiv.org/abs/2410.18974v1
- Date: Thu, 24 Oct 2024 17:59:30 GMT
- Title: 3D-Adapter: Geometry-Consistent Multi-View Diffusion for High-Quality 3D Generation
- Authors: Hansheng Chen, Bokui Shen, Yulin Liu, Ruoxi Shi, Linqi Zhou, Connor Z. Lin, Jiayuan Gu, Hao Su, Gordon Wetzstein, Leonidas Guibas,
- Abstract summary: 3D-Adapter is a plug-in module designed to infuse 3D geometry awareness into pretrained image diffusion models.
We show that 3D-Adapter greatly enhances the geometry quality of text-to-multi-view models such as Instant3D and Zero123++.
We also showcase the broad application potential of 3D-Adapter by presenting high quality results in text-to-3D, image-to-3D, text-to-texture, and text-to-avatar tasks.
- Score: 45.218605449572586
- License:
- Abstract: Multi-view image diffusion models have significantly advanced open-domain 3D object generation. However, most existing models rely on 2D network architectures that lack inherent 3D biases, resulting in compromised geometric consistency. To address this challenge, we introduce 3D-Adapter, a plug-in module designed to infuse 3D geometry awareness into pretrained image diffusion models. Central to our approach is the idea of 3D feedback augmentation: for each denoising step in the sampling loop, 3D-Adapter decodes intermediate multi-view features into a coherent 3D representation, then re-encodes the rendered RGBD views to augment the pretrained base model through feature addition. We study two variants of 3D-Adapter: a fast feed-forward version based on Gaussian splatting and a versatile training-free version utilizing neural fields and meshes. Our extensive experiments demonstrate that 3D-Adapter not only greatly enhances the geometry quality of text-to-multi-view models such as Instant3D and Zero123++, but also enables high-quality 3D generation using the plain text-to-image Stable Diffusion. Furthermore, we showcase the broad application potential of 3D-Adapter by presenting high quality results in text-to-3D, image-to-3D, text-to-texture, and text-to-avatar tasks.
Related papers
- Geometry Image Diffusion: Fast and Data-Efficient Text-to-3D with Image-Based Surface Representation [2.3213238782019316]
GIMDiffusion is a novel Text-to-3D model that utilizes geometry images to efficiently represent 3D shapes using 2D images.
We exploit the rich 2D priors of existing Text-to-Image models such as Stable Diffusion.
In short, GIMDiffusion enables the generation of 3D assets at speeds comparable to current Text-to-Image models.
arXiv Detail & Related papers (2024-09-05T17:21:54Z) - MeshFormer: High-Quality Mesh Generation with 3D-Guided Reconstruction Model [34.245635412589806]
MeshFormer is a sparse-view reconstruction model that explicitly leverages 3D native structure, input guidance, and training supervision.
It can be integrated with 2D diffusion models to enable fast single-image-to-3D and text-to-3D tasks.
arXiv Detail & Related papers (2024-08-19T17:55:17Z) - DIRECT-3D: Learning Direct Text-to-3D Generation on Massive Noisy 3D Data [50.164670363633704]
We present DIRECT-3D, a diffusion-based 3D generative model for creating high-quality 3D assets from text prompts.
Our model is directly trained on extensive noisy and unaligned in-the-wild' 3D assets.
We achieve state-of-the-art performance in both single-class generation and text-to-3D generation.
arXiv Detail & Related papers (2024-06-06T17:58:15Z) - Direct3D: Scalable Image-to-3D Generation via 3D Latent Diffusion Transformer [26.375689838055774]
Direct3D is a native 3D generative model scalable to in-the-wild input images.
Our approach comprises two primary components: a Direct 3D Variational Auto-Encoder (D3D-VAE) and a Direct 3D Diffusion Transformer (D3D-DiT)
arXiv Detail & Related papers (2024-05-23T17:49:37Z) - LN3Diff: Scalable Latent Neural Fields Diffusion for Speedy 3D Generation [73.36690511083894]
This paper introduces a novel framework called LN3Diff to address a unified 3D diffusion pipeline.
Our approach harnesses a 3D-aware architecture and variational autoencoder to encode the input image into a structured, compact, and 3D latent space.
It achieves state-of-the-art performance on ShapeNet for 3D generation and demonstrates superior performance in monocular 3D reconstruction and conditional 3D generation.
arXiv Detail & Related papers (2024-03-18T17:54:34Z) - Sculpt3D: Multi-View Consistent Text-to-3D Generation with Sparse 3D Prior [57.986512832738704]
We present a new framework Sculpt3D that equips the current pipeline with explicit injection of 3D priors from retrieved reference objects without re-training the 2D diffusion model.
Specifically, we demonstrate that high-quality and diverse 3D geometry can be guaranteed by keypoints supervision through a sparse ray sampling approach.
These two decoupled designs effectively harness 3D information from reference objects to generate 3D objects while preserving the generation quality of the 2D diffusion model.
arXiv Detail & Related papers (2024-03-14T07:39:59Z) - Sherpa3D: Boosting High-Fidelity Text-to-3D Generation via Coarse 3D
Prior [52.44678180286886]
2D diffusion models find a distillation approach that achieves excellent generalization and rich details without any 3D data.
We propose Sherpa3D, a new text-to-3D framework that achieves high-fidelity, generalizability, and geometric consistency simultaneously.
arXiv Detail & Related papers (2023-12-11T18:59:18Z) - EfficientDreamer: High-Fidelity and Robust 3D Creation via Orthogonal-view Diffusion Prior [59.25950280610409]
We propose a robust high-quality 3D content generation pipeline by exploiting orthogonal-view image guidance.
In this paper, we introduce a novel 2D diffusion model that generates an image consisting of four sub-images based on the given text prompt.
We also present a 3D synthesis network that can further improve the details of the generated 3D contents.
arXiv Detail & Related papers (2023-08-25T07:39:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.