論文の概要: VehicleSDF: A 3D generative model for constrained engineering design via surrogate modeling
- arxiv url: http://arxiv.org/abs/2410.18986v1
- Date: Wed, 09 Oct 2024 16:59:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-03 08:52:29.957628
- Title: VehicleSDF: A 3D generative model for constrained engineering design via surrogate modeling
- Title(参考訳): VehicleSDF: 代理モデルによる制約工学設計のための3次元生成モデル
- Authors: Hayata Morita, Kohei Shintani, Chenyang Yuan, Frank Permenter,
- Abstract要約: 本研究は,自動車開発におけるデザイン空間の探索に3次元生成モデルを用いたことを明らかにする。
我々は、所定の幾何学的仕様を満たす車両の様々な3Dモデルを生成する。
また,空力抵抗などの性能パラメータを高速に推定する。
- 参考スコア(独自算出の注目度): 3.746111274696241
- License:
- Abstract: A main challenge in mechanical design is to efficiently explore the design space while satisfying engineering constraints. This work explores the use of 3D generative models to explore the design space in the context of vehicle development, while estimating and enforcing engineering constraints. Specifically, we generate diverse 3D models of cars that meet a given set of geometric specifications, while also obtaining quick estimates of performance parameters such as aerodynamic drag. For this, we employ a data-driven approach (using the ShapeNet dataset) to train VehicleSDF, a DeepSDF based model that represents potential designs in a latent space witch can be decoded into a 3D model. We then train surrogate models to estimate engineering parameters from this latent space representation, enabling us to efficiently optimize latent vectors to match specifications. Our experiments show that we can generate diverse 3D models while matching the specified geometric parameters. Finally, we demonstrate that other performance parameters such as aerodynamic drag can be estimated in a differentiable pipeline.
- Abstract(参考訳): 機械設計における主な課題は、工学的制約を満たしながら設計空間を効率的に探索することである。
本研究は, 自動車開発における設計空間の探索に3次元生成モデルを用い, 工学的制約を推定し, 実施するものである。
具体的には、所定の幾何仕様を満たす車両の多種多様な3次元モデルを生成するとともに、空力抵抗などの性能パラメータを高速に推定する。
このために、我々はデータ駆動型アプローチ(ShapeNetデータセットを使用)を用いて、潜伏空間魔女の潜在的な設計を3DモデルにデコードできるDeepSDFベースのモデルであるVagerSDFを訓練する。
次に、この潜在空間表現からエンジニアリングパラメータを推定するために代理モデルを訓練し、潜在ベクトルを仕様に合うように効率的に最適化する。
実験により,特定パラメータとマッチングしながら,多様な3次元モデルを生成できることが判明した。
最後に, エアロダイナミック・ドラッグなどの他の性能パラメータを, 微分可能なパイプラインで推定できることを実証する。
関連論文リスト
- Bayesian Mesh Optimization for Graph Neural Networks to Enhance Engineering Performance Prediction [1.6574413179773761]
工学設計において、サロゲートモデルは計算コストのかかるシミュレーションを置き換えるために広く使われている。
本稿では3次元ディープラーニングに基づく代理モデルのためのベイズグラフニューラルネットワーク(GNN)フレームワークを提案する。
我々のフレームワークはベイズ最適化によってメッシュ要素の最適サイズを決定し、その結果、高精度なサロゲートモデルが得られる。
論文 参考訳(メタデータ) (2024-06-04T06:27:48Z) - Pushing Auto-regressive Models for 3D Shape Generation at Capacity and Scalability [118.26563926533517]
自己回帰モデルでは,格子空間における関節分布をモデル化することにより,2次元画像生成において顕著な結果が得られた。
自動回帰モデルを3次元領域に拡張し,キャパシティとスケーラビリティを同時に向上することにより,3次元形状生成の強力な能力を求める。
論文 参考訳(メタデータ) (2024-02-19T15:33:09Z) - Compositional Generative Inverse Design [69.22782875567547]
入力変数を設計して目的関数を最適化する逆設計は重要な問題である。
拡散モデルにより得られた学習エネルギー関数を最適化することにより、そのような逆例を避けることができることを示す。
N-body 相互作用タスクと2次元多面体設計タスクにおいて,実験時に学習した拡散モデルを構成することにより,初期状態と境界形状を設計できることを示す。
論文 参考訳(メタデータ) (2024-01-24T01:33:39Z) - Weighted Unsupervised Domain Adaptation Considering Geometry Features
and Engineering Performance of 3D Design Data [2.306144660547256]
本稿では,3次元設計データの幾何学的特徴と工学的性能を考慮した2重非教師なし領域適応手法を提案する。
提案モデルでは, 最大von Mises応力の大きさとそれに対応する3次元路面車輪の位置を予測するために, 車輪衝撃解析問題を用いて実験を行った。
論文 参考訳(メタデータ) (2023-09-08T00:26:44Z) - Pushing the Limits of 3D Shape Generation at Scale [65.24420181727615]
我々は、前例のない次元に拡大することで、3次元形状生成において画期的なブレークスルーを示す。
現在までに最大の3次元形状生成モデルとしてArgus-3Dが確立されている。
論文 参考訳(メタデータ) (2023-06-20T13:01:19Z) - AircraftVerse: A Large-Scale Multimodal Dataset of Aerial Vehicle
Designs [15.169540193173923]
AircraftVerseには27,714種類の航空車両がある。
それぞれのデザインは、トポロジー推進サブシステム、バッテリーサブシステム、設計の詳細を記述する象徴的なデザインツリーで構成されている。
本稿では,設計性能の指標を予測するために,設計表現の異なるモダリティを用いたベースラインサロゲートモデルを提案する。
論文 参考訳(メタデータ) (2023-06-08T21:07:15Z) - Surrogate Modeling of Car Drag Coefficient with Depth and Normal
Renderings [4.868319717279586]
本稿では,3次元カードラッグの予測の有効性を検証するために,新しい2次元3次元形状表現法を提案する。
我々はドラッグ係数でラベル付けされた9,070個の高品質な3Dカーメッシュの多様なデータセットを構築した。
実験により,車種別0.84以上のR2$値のドラッグ係数を精度良く,効率的に評価できることを示した。
論文 参考訳(メタデータ) (2023-05-26T09:33:12Z) - Automatic Parameterization for Aerodynamic Shape Optimization via Deep
Geometric Learning [60.69217130006758]
空力形状最適化のための形状パラメータ化を完全に自動化する2つの深層学習モデルを提案する。
どちらのモデルも、深い幾何学的学習を通じてパラメータ化し、人間の事前知識を学習された幾何学的パターンに埋め込むように最適化されている。
2次元翼の形状最適化実験を行い、2つのモデルに適用可能なシナリオについて論じる。
論文 参考訳(メタデータ) (2023-05-03T13:45:40Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
深層生成モデルは、多くの潜伏変数を通して非線形データ分布の学習に成功している。
ジェネレータの非線形性は、潜在空間がデータ空間の不満足な射影を示し、表現学習が不十分になることを意味する。
本研究では、測地学と正確な計算により、深部生成モデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-04-03T13:13:19Z) - Learning Versatile 3D Shape Generation with Improved AR Models [91.87115744375052]
自己回帰(AR)モデルはグリッド空間の関節分布をモデル化することにより2次元画像生成において印象的な結果を得た。
本稿では3次元形状生成のための改良された自己回帰モデル(ImAM)を提案する。
論文 参考訳(メタデータ) (2023-03-26T12:03:18Z) - Investigation of Physics-Informed Deep Learning for the Prediction of
Parametric, Three-Dimensional Flow Based on Boundary Data [0.0]
熱水車シミュレーションにおける3次元流れ場予測のためのパラメータ化サロゲートモデルを提案する。
物理インフォームドニューラルネットワーク (PINN) の設計は, 幾何学的変動に応じて, 流れ解の族を学習することを目的としている。
論文 参考訳(メタデータ) (2022-03-17T09:54:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。