Oracle Separations for the Quantum-Classical Polynomial Hierarchy
- URL: http://arxiv.org/abs/2410.19062v1
- Date: Thu, 24 Oct 2024 18:12:03 GMT
- Title: Oracle Separations for the Quantum-Classical Polynomial Hierarchy
- Authors: Avantika Agarwal, Shalev Ben-David,
- Abstract summary: We study the quantum-classical hierarchy, QCPH, which is the class of languages solvable by a constant number of alternating classical quantifiers.
We give a new switching lemma for quantum algorithms which may be of independent interest.
- Score: 0.0
- License:
- Abstract: We study the quantum-classical polynomial hierarchy, QCPH, which is the class of languages solvable by a constant number of alternating classical quantifiers followed by a quantum verifier. Our main result is that QCPH is infinite relative to a random oracle (previously, this was not even known relative to any oracle). We further prove that higher levels of PH are not contained in lower levels of QCPH relative to a random oracle; this is a strengthening of the somewhat recent result that PH is infinite relative to a random oracle (Rossman, Servedio, and Tan 2016). The oracle separation requires lower bounding a certain type of low-depth alternating circuit with some quantum gates. To establish this, we give a new switching lemma for quantum algorithms which may be of independent interest. Our lemma says that for any $d$, if we apply a random restriction to a function $f$ with quantum query complexity $\mathrm{Q}(f)\le n^{1/3}$, the restricted function becomes exponentially close (in terms of $d$) to a depth-$d$ decision tree. Our switching lemma works even in a "worst-case" sense, in that only the indices to be restricted are random; the values they are restricted to are chosen adversarially. Moreover, the switching lemma also works for polynomial degree in place of quantum query complexity.
Related papers
- QMA vs. QCMA and Pseudorandomness [5.483786291093505]
We show that such an oracle exists if a certain quantum pseudorandomness conjecture holds.
Our result can be viewed as establishing a "win-win" scenario.
arXiv Detail & Related papers (2024-11-21T18:50:12Z) - Bosonic Quantum Computational Complexity [0.0]
We lay foundations for such a research program.
We introduce natural complexity classes and problems based on bosonic generalizations of BQP.
We show that the problem of deciding the boundedness of the spectrum of a bosonic Hamiltonian is co-NP-hard.
arXiv Detail & Related papers (2024-10-05T19:43:41Z) - Founding Quantum Cryptography on Quantum Advantage, or, Towards Cryptography from $\mathsf{\#P}$-Hardness [10.438299411521099]
Recent separations have raised the tantalizing possibility of building quantum cryptography from sources of hardness that persist even if hierarchy collapses.
We show that quantum cryptography can be based on the extremely mild assumption that $mathsfP#P notsubseteq mathsf(io)BQP/qpoly$.
arXiv Detail & Related papers (2024-09-23T17:45:33Z) - The Power of Unentangled Quantum Proofs with Non-negative Amplitudes [55.90795112399611]
We study the power of unentangled quantum proofs with non-negative amplitudes, a class which we denote $textQMA+(2)$.
In particular, we design global protocols for small set expansion, unique games, and PCP verification.
We show that QMA(2) is equal to $textQMA+(2)$ provided the gap of the latter is a sufficiently large constant.
arXiv Detail & Related papers (2024-02-29T01:35:46Z) - One-Way Ticket to Las Vegas and the Quantum Adversary [78.33558762484924]
We show that quantum Las Vegas query complexity is exactly equal to the quantum adversary bound.
This is achieved by transforming a feasible solution to the adversary inversion problem into a quantum query algorithm.
arXiv Detail & Related papers (2023-01-05T11:05:22Z) - Quantum Depth in the Random Oracle Model [57.663890114335736]
We give a comprehensive characterization of the computational power of shallow quantum circuits combined with classical computation.
For some problems, the ability to perform adaptive measurements in a single shallow quantum circuit is more useful than the ability to perform many shallow quantum circuits without adaptive measurements.
arXiv Detail & Related papers (2022-10-12T17:54:02Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - An optimal oracle separation of classical and quantum hybrid schemes [0.0]
We show that for any depth parameter $d$, there exists an oracle that separates quantum depth $d$ and $2d+1$, when computation-time classical is allowed.
This gives an optimal oracle separation of classical and quantum hybrid schemes.
arXiv Detail & Related papers (2022-05-10T02:31:19Z) - Resource Optimisation of Coherently Controlled Quantum Computations with
the PBS-calculus [55.2480439325792]
Coherent control of quantum computations can be used to improve some quantum protocols and algorithms.
We refine the PBS-calculus, a graphical language for coherent control inspired by quantum optics.
arXiv Detail & Related papers (2022-02-10T18:59:52Z) - Oracle separations of hybrid quantum-classical circuits [68.96380145211093]
Two models of quantum computation: CQ_d and QC_d.
CQ_d captures the scenario of a d-depth quantum computer many times; QC_d is more analogous to measurement-based quantum computation.
We show that, despite the similarities between CQ_d and QC_d, the two models are intrinsically, i.e. CQ_d $nsubseteq$ QC_d and QC_d $nsubseteq$ CQ_d relative to an oracle.
arXiv Detail & Related papers (2022-01-06T03:10:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.