QMA vs. QCMA and Pseudorandomness
- URL: http://arxiv.org/abs/2411.14416v3
- Date: Tue, 26 Nov 2024 18:55:32 GMT
- Title: QMA vs. QCMA and Pseudorandomness
- Authors: Jiahui Liu, Saachi Mutreja, Henry Yuen,
- Abstract summary: We show that such an oracle exists if a certain quantum pseudorandomness conjecture holds.
Our result can be viewed as establishing a "win-win" scenario.
- Score: 5.483786291093505
- License:
- Abstract: We study a longstanding question of Aaronson and Kuperberg on whether there exists a classical oracle separating $\mathsf{QMA}$ from $\mathsf{QCMA}$. Settling this question in either direction would yield insight into the power of quantum proofs over classical proofs. We show that such an oracle exists if a certain quantum pseudorandomness conjecture holds. Roughly speaking, the conjecture posits that quantum algorithms cannot, by making few queries, distinguish between the uniform distribution over permutations versus permutations drawn from so-called "dense" distributions. Our result can be viewed as establishing a "win-win" scenario: either there is a classical oracle separation of $\mathsf{QMA}$ from $\mathsf{QCMA}$, or there is quantum advantage in distinguishing pseudorandom distributions on permutations.
Related papers
- Quantum-Computable One-Way Functions without One-Way Functions [0.6349503549199401]
We construct a classical oracle relative to which $mathsfP = mathsfNP$ but quantum-computable quantum-secure trapdoor one-way functions exist.
Our result implies multi-copy pseudorandom states and pseudorandom unitaries, but also classical-communication public-key encryption, signatures, and oblivious transfer schemes.
arXiv Detail & Related papers (2024-11-04T19:40:01Z) - Oracle Separations for the Quantum-Classical Polynomial Hierarchy [0.0]
We study the quantum-classical hierarchy, QCPH, which is the class of languages solvable by a constant number of alternating classical quantifiers.
We give a new switching lemma for quantum algorithms which may be of independent interest.
arXiv Detail & Related papers (2024-10-24T18:12:03Z) - The Power of Unentangled Quantum Proofs with Non-negative Amplitudes [55.90795112399611]
We study the power of unentangled quantum proofs with non-negative amplitudes, a class which we denote $textQMA+(2)$.
In particular, we design global protocols for small set expansion, unique games, and PCP verification.
We show that QMA(2) is equal to $textQMA+(2)$ provided the gap of the latter is a sufficiently large constant.
arXiv Detail & Related papers (2024-02-29T01:35:46Z) - Generalized Hybrid Search and Applications to Blockchain and Hash
Function Security [50.16790546184646]
We first examine the hardness of solving various search problems by hybrid quantum-classical strategies.
We then construct a hybrid quantum-classical search algorithm and analyze its success probability.
arXiv Detail & Related papers (2023-11-07T04:59:02Z) - Connecting classical finite exchangeability to quantum theory [69.62715388742298]
Exchangeability is a fundamental concept in probability theory and statistics.
We show how a de Finetti-like representation theorem for finitely exchangeable sequences requires a mathematical representation which is formally equivalent to quantum theory.
arXiv Detail & Related papers (2023-06-06T17:15:19Z) - Quantum Cryptography in Algorithmica [0.7524721345903025]
We show that in a black-box setting, quantum cryptography based on pseudorandom states is possible even if one-way functions do not exist.
We also introduce a conjecture that would generalize our results to multi-copy secure pseudorandom states.
arXiv Detail & Related papers (2022-12-01T21:33:38Z) - A distribution testing oracle separation between QMA and QCMA [0.6144680854063939]
It is a long-standing open question in quantum complexity theory whether the definition of $textitnon-deterministic$ quantum computation requires quantum witnesses.
We make progress on this question by constructing a randomized classical oracle separating the respective computational complexity classes.
arXiv Detail & Related papers (2022-10-27T12:43:56Z) - Quantum Depth in the Random Oracle Model [57.663890114335736]
We give a comprehensive characterization of the computational power of shallow quantum circuits combined with classical computation.
For some problems, the ability to perform adaptive measurements in a single shallow quantum circuit is more useful than the ability to perform many shallow quantum circuits without adaptive measurements.
arXiv Detail & Related papers (2022-10-12T17:54:02Z) - Why we should interpret density matrices as moment matrices: the case of
(in)distinguishable particles and the emergence of classical reality [69.62715388742298]
We introduce a formulation of quantum theory (QT) as a general probabilistic theory but expressed via quasi-expectation operators (QEOs)
We will show that QT for both distinguishable and indistinguishable particles can be formulated in this way.
We will show that finitely exchangeable probabilities for a classical dice are as weird as QT.
arXiv Detail & Related papers (2022-03-08T14:47:39Z) - Oracle separations of hybrid quantum-classical circuits [68.96380145211093]
Two models of quantum computation: CQ_d and QC_d.
CQ_d captures the scenario of a d-depth quantum computer many times; QC_d is more analogous to measurement-based quantum computation.
We show that, despite the similarities between CQ_d and QC_d, the two models are intrinsically, i.e. CQ_d $nsubseteq$ QC_d and QC_d $nsubseteq$ CQ_d relative to an oracle.
arXiv Detail & Related papers (2022-01-06T03:10:53Z) - Quantum Pseudorandomness and Classical Complexity [0.08158530638728499]
We show that cryptographic pseudorandom quantum states and pseudorandom unitary transformations exist.
We discuss implications of these results for cryptography, complexity theory, and quantum tomography.
arXiv Detail & Related papers (2021-03-16T20:54:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.