論文の概要: Distributed Blind Source Separation based on FastICA
- arxiv url: http://arxiv.org/abs/2410.19112v1
- Date: Thu, 24 Oct 2024 19:27:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-28 13:33:13.655181
- Title: Distributed Blind Source Separation based on FastICA
- Title(参考訳): FastICAに基づく分散型ブラインド音源分離
- Authors: Cem Ates Musluoglu, Alexander Bertrand,
- Abstract要約: 本稿では,元の信号源の同定を目的とした分散独立成分分析(ICA)アルゴリズムを提案する。
最もよく使われるICAアルゴリズムの1つはFastICAと呼ばれ、空間的な事前白化操作を必要とする。
我々は、いわゆる分散適応信号融合フレームワークの特性を活用することにより、ネットワーク全体の事前白化の明確なステップを回避することができることを示す。
- 参考スコア(独自算出の注目度): 47.97358059404364
- License:
- Abstract: With the emergence of wireless sensor networks (WSNs), many traditional signal processing tasks are required to be computed in a distributed fashion, without transmissions of the raw data to a centralized processing unit, due to the limited energy and bandwidth resources available to the sensors. In this paper, we propose a distributed independent component analysis (ICA) algorithm, which aims at identifying the original signal sources based on observations of their mixtures measured at various sensor nodes. One of the most commonly used ICA algorithms is known as FastICA, which requires a spatial pre-whitening operation in the first step of the algorithm. Such a pre-whitening across all nodes of a WSN is impossible in a bandwidth-constrained distributed setting as it requires to correlate each channel with each other channel in the WSN. We show that an explicit network-wide pre-whitening step can be circumvented by leveraging the properties of the so-called Distributed Adaptive Signal Fusion (DASF) framework. Despite the lack of such a network-wide pre-whitening, we can still obtain the $Q$ least Gaussian independent components of the centralized ICA solution, where $Q$ scales linearly with the required communication load.
- Abstract(参考訳): 無線センサネットワーク(WSN)の出現に伴い、センサに利用可能な限られたエネルギーと帯域幅の資源のために、生データを集中処理ユニットに送信することなく、多くの従来の信号処理タスクを分散的に計算する必要がある。
本稿では,様々なセンサノードで測定された混合成分の観測に基づいて,元の信号源を特定することを目的とした分散独立成分分析(ICA)アルゴリズムを提案する。
最もよく使われるICAアルゴリズムの1つはFastICAと呼ばれ、アルゴリズムの最初のステップで空間的な事前白化操作を必要とする。
WSNのすべてのノードを横断する事前白化は、WSN内の各チャネルを相互に関連付ける必要があるため、帯域幅制限の分散設定では不可能である。
本研究では,DASF(Distributed Adaptive Signal Fusion,分散適応信号融合)フレームワークの特性を活用することにより,ネットワーク全体の事前白化を回避可能であることを示す。
このようなネットワーク全体の事前白化がないにもかかわらず、集中型ICAソリューションの最小ガウス独立成分である$Q$は、必要な通信負荷と線形にスケールできる。
関連論文リスト
- Faster Convergence with Less Communication: Broadcast-Based Subgraph
Sampling for Decentralized Learning over Wireless Networks [32.914407967052114]
$texttBASS$はD-SGDの収束を加速するために設計された放送ベースのサブグラフサンプリング手法である。
既存のリンクベースのスケジューリング手法と比較して,送信スロットが少ないため,$texttBASS$はより高速な収束を可能にする。
論文 参考訳(メタデータ) (2024-01-24T20:00:23Z) - Generative Adversarial Learning of Sinkhorn Algorithm Initializations [0.0]
我々は、エントロピーOT双対問題を通じてアルゴリズムの初期化を学ぶためにニューラルネットワークを巧みに訓練することで、収束を著しく加速できることを示した。
我々のネットワークは,正規化輸送距離を数パーセントの誤差に近似するために,スタンドアロンのOTソルバとしても使用できることを示す。
論文 参考訳(メタデータ) (2022-11-30T21:56:09Z) - Bandwidth-efficient distributed neural network architectures with
application to body sensor networks [73.02174868813475]
本稿では,分散ニューラルネットワークアーキテクチャを設計するための概念設計手法について述べる。
提案手法により,損失を最小限に抑えつつ,最大20倍の帯域幅削減が可能となることを示す。
本稿では,ウェアラブル脳-コンピュータインタフェースに焦点をあてるが,他のセンサネットワークアプリケーションにも適用できる。
論文 参考訳(メタデータ) (2022-10-14T12:35:32Z) - On the Effective Number of Linear Regions in Shallow Univariate ReLU
Networks: Convergence Guarantees and Implicit Bias [50.84569563188485]
我々は、ラベルが$r$のニューロンを持つターゲットネットワークの符号によって決定されるとき、勾配流が方向収束することを示す。
我々の結果は、標本サイズによらず、幅が$tildemathcalO(r)$である、緩やかなオーバーパラメータ化をすでに維持しているかもしれない。
論文 参考訳(メタデータ) (2022-05-18T16:57:10Z) - Federated Learning for Distributed Spectrum Sensing in NextG
Communication Networks [3.509171590450989]
NextGネットワークは、既存のユーザとスペクトルを共有する柔軟性を提供することを目的としている。
無線センサのネットワークは、大規模な展開領域における信号伝達のスペクトルを監視するために必要である。
精度を向上させるために、個々のセンサは、センサーデータまたはセンサー結果を相互または融合センタで交換することができる。
論文 参考訳(メタデータ) (2022-04-06T18:18:42Z) - SlimFL: Federated Learning with Superposition Coding over Slimmable
Neural Networks [56.68149211499535]
フェデレートラーニング(FL)は、デバイスの分散コンピューティング機能を活用した効率的なコミュニケーションとコンピューティングのための重要な実現手段である。
本稿では、FLと幅調整可能なスリムブルニューラルネットワーク(SNN)を統合した新しい学習フレームワークを提案する。
局所モデル更新のためのグローバルモデル集約と重ね合わせ訓練(ST)に重ね合わせ符号化(SC)を併用した通信およびエネルギー効率の高いSNNベースFL(SlimFL)を提案する。
論文 参考訳(メタデータ) (2022-03-26T15:06:13Z) - Provable Generalization of SGD-trained Neural Networks of Any Width in
the Presence of Adversarial Label Noise [85.59576523297568]
勾配降下法により学習した任意の幅の1層リークReLUネットワークを考察する。
sgdは,分布上の最良半空間に匹敵する分類精度を持つニューラルネットワークを生成できることを実証する。
論文 参考訳(メタデータ) (2021-01-04T18:32:49Z) - A Compressive Sensing Approach for Federated Learning over Massive MIMO
Communication Systems [82.2513703281725]
フェデレートラーニング(Federated Learning)は、無線デバイスとのコラボレーションによって、中央サーバでグローバルモデルをトレーニングするための、プライバシ保護のアプローチである。
本稿では,大規模マルチインプット多出力通信システム上でのフェデレーション学習のための圧縮センシング手法を提案する。
論文 参考訳(メタデータ) (2020-03-18T05:56:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。