A spectral method for multi-view subspace learning using the product of projections
- URL: http://arxiv.org/abs/2410.19125v1
- Date: Thu, 24 Oct 2024 19:51:55 GMT
- Title: A spectral method for multi-view subspace learning using the product of projections
- Authors: Renat Sergazinov, Armeen Taeb, Irina Gaynanova,
- Abstract summary: We provide an easy-to-use and scalable estimation algorithm for multi-view data.
In particular, we employ rotational bootstrap and random matrix theory to partition the observed spectrum into joint, individual, and noise subspaces.
In simulations, our method estimates joint and individual subspaces more accurately than existing approaches.
- Score: 0.16385815610837165
- License:
- Abstract: Multi-view data provides complementary information on the same set of observations, with multi-omics and multimodal sensor data being common examples. Analyzing such data typically requires distinguishing between shared (joint) and unique (individual) signal subspaces from noisy, high-dimensional measurements. Despite many proposed methods, the conditions for reliably identifying joint and individual subspaces remain unclear. We rigorously quantify these conditions, which depend on the ratio of the signal rank to the ambient dimension, principal angles between true subspaces, and noise levels. Our approach characterizes how spectrum perturbations of the product of projection matrices, derived from each view's estimated subspaces, affect subspace separation. Using these insights, we provide an easy-to-use and scalable estimation algorithm. In particular, we employ rotational bootstrap and random matrix theory to partition the observed spectrum into joint, individual, and noise subspaces. Diagnostic plots visualize this partitioning, providing practical and interpretable insights into the estimation performance. In simulations, our method estimates joint and individual subspaces more accurately than existing approaches. Applications to multi-omics data from colorectal cancer patients and nutrigenomic study of mice demonstrate improved performance in downstream predictive tasks.
Related papers
- Optimal Estimation of Shared Singular Subspaces across Multiple Noisy Matrices [3.3373545585860596]
This study focuses on estimating shared (left) singular subspaces across multiple matrices within a low-rank matrix denoising framework.
We establish that Stack-SVD achieves minimax rate-optimality when the true singular subspaces of the signal matrices are identical.
For various cases of partial sharing, we rigorously characterize the conditions under which Stack-SVD remains effective, achieves minimax optimality, or fails to deliver consistent estimates.
arXiv Detail & Related papers (2024-11-26T02:49:30Z) - A Bayesian Approach Toward Robust Multidimensional Ellipsoid-Specific Fitting [0.0]
This work presents a novel and effective method for fitting multidimensional ellipsoids to scattered data in the contamination of noise and outliers.
We incorporate a uniform prior distribution to constrain the search for primitive parameters within an ellipsoidal domain.
We apply it to a wide range of practical applications such as microscopy cell counting, 3D reconstruction, geometric shape approximation, and magnetometer calibration tasks.
arXiv Detail & Related papers (2024-07-27T14:31:51Z) - Hodge-Aware Contrastive Learning [101.56637264703058]
Simplicial complexes prove effective in modeling data with multiway dependencies.
We develop a contrastive self-supervised learning approach for processing simplicial data.
arXiv Detail & Related papers (2023-09-14T00:40:07Z) - Linking data separation, visual separation, and classifier performance
using pseudo-labeling by contrastive learning [125.99533416395765]
We argue that the performance of the final classifier depends on the data separation present in the latent space and visual separation present in the projection.
We demonstrate our results by the classification of five real-world challenging image datasets of human intestinal parasites with only 1% supervised samples.
arXiv Detail & Related papers (2023-02-06T10:01:38Z) - Intrinsic dimension estimation for discrete metrics [65.5438227932088]
In this letter we introduce an algorithm to infer the intrinsic dimension (ID) of datasets embedded in discrete spaces.
We demonstrate its accuracy on benchmark datasets, and we apply it to analyze a metagenomic dataset for species fingerprinting.
This suggests that evolutive pressure acts on a low-dimensional manifold despite the high-dimensionality of sequences' space.
arXiv Detail & Related papers (2022-07-20T06:38:36Z) - Spatio-temporally separable non-linear latent factor learning: an
application to somatomotor cortex fMRI data [0.0]
Models of fMRI data that can perform whole-brain discovery of latent factors are understudied.
New methods for efficient spatial weight-sharing are critical to deal with the high dimensionality of the data and the presence of noise.
Our approach is evaluated on data with multiple motor sub-tasks to assess whether the model captures disentangled latent factors that correspond to each sub-task.
arXiv Detail & Related papers (2022-05-26T21:30:22Z) - Learning Low-Dimensional Nonlinear Structures from High-Dimensional
Noisy Data: An Integral Operator Approach [5.975670441166475]
We propose a kernel-spectral embedding algorithm for learning low-dimensional nonlinear structures from high-dimensional and noisy observations.
The algorithm employs an adaptive bandwidth selection procedure which does not rely on prior knowledge of the underlying manifold.
The obtained low-dimensional embeddings can be further utilized for downstream purposes such as data visualization, clustering and prediction.
arXiv Detail & Related papers (2022-02-28T22:46:34Z) - Combining Observational and Randomized Data for Estimating Heterogeneous
Treatment Effects [82.20189909620899]
Estimating heterogeneous treatment effects is an important problem across many domains.
Currently, most existing works rely exclusively on observational data.
We propose to estimate heterogeneous treatment effects by combining large amounts of observational data and small amounts of randomized data.
arXiv Detail & Related papers (2022-02-25T18:59:54Z) - Joint and Progressive Subspace Analysis (JPSA) with Spatial-Spectral
Manifold Alignment for Semi-Supervised Hyperspectral Dimensionality Reduction [48.73525876467408]
We propose a novel technique for hyperspectral subspace analysis.
The technique is called joint and progressive subspace analysis (JPSA)
Experiments are conducted to demonstrate the superiority and effectiveness of the proposed JPSA on two widely-used hyperspectral datasets.
arXiv Detail & Related papers (2020-09-21T16:29:59Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
In [1], an ensemble of randomly projected linear discriminants is used to classify datasets.
We develop a consistent estimator of the misclassification probability as an alternative to the computationally-costly cross-validation estimator.
We also demonstrate the use of our estimator for tuning the projection dimension on both real and synthetic data.
arXiv Detail & Related papers (2020-04-17T12:47:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.