Optimal Estimation of Shared Singular Subspaces across Multiple Noisy Matrices
- URL: http://arxiv.org/abs/2411.17054v1
- Date: Tue, 26 Nov 2024 02:49:30 GMT
- Title: Optimal Estimation of Shared Singular Subspaces across Multiple Noisy Matrices
- Authors: Zhengchi Ma, Rong Ma,
- Abstract summary: This study focuses on estimating shared (left) singular subspaces across multiple matrices within a low-rank matrix denoising framework.
We establish that Stack-SVD achieves minimax rate-optimality when the true singular subspaces of the signal matrices are identical.
For various cases of partial sharing, we rigorously characterize the conditions under which Stack-SVD remains effective, achieves minimax optimality, or fails to deliver consistent estimates.
- Score: 3.3373545585860596
- License:
- Abstract: Estimating singular subspaces from noisy matrices is a fundamental problem with wide-ranging applications across various fields. Driven by the challenges of data integration and multi-view analysis, this study focuses on estimating shared (left) singular subspaces across multiple matrices within a low-rank matrix denoising framework. A common approach for this task is to perform singular value decomposition on the stacked matrix (Stack-SVD), which is formed by concatenating all the individual matrices. We establish that Stack-SVD achieves minimax rate-optimality when the true (left) singular subspaces of the signal matrices are identical. Our analysis reveals some phase transition phenomena in the estimation problem as a function of the underlying signal-to-noise ratio, highlighting how the interplay among multiple matrices collectively determines the fundamental limits of estimation. We then tackle the more complex scenario where the true singular subspaces are only partially shared across matrices. For various cases of partial sharing, we rigorously characterize the conditions under which Stack-SVD remains effective, achieves minimax optimality, or fails to deliver consistent estimates, offering theoretical insights into its practical applicability. To overcome Stack-SVD's limitations in partial sharing scenarios, we propose novel estimators and an efficient algorithm to identify shared and unshared singular vectors, and prove their minimax rate-optimality. Extensive simulation studies and real-world data applications demonstrate the numerous advantages of our proposed approaches.
Related papers
- A spectral method for multi-view subspace learning using the product of projections [0.16385815610837165]
We provide an easy-to-use and scalable estimation algorithm for multi-view data.
In particular, we employ rotational bootstrap and random matrix theory to partition the observed spectrum into joint, individual, and noise subspaces.
In simulations, our method estimates joint and individual subspaces more accurately than existing approaches.
arXiv Detail & Related papers (2024-10-24T19:51:55Z) - Empirical Bayes Linked Matrix Decomposition [0.0]
We propose an empirical variational Bayesian approach to this problem.
We describe an associated iterative imputation approach that is novel for the single-matrix context.
We show that the method performs very well under different scenarios with respect to recovering underlying low-rank signal.
arXiv Detail & Related papers (2024-08-01T02:13:11Z) - Structured Matrix Learning under Arbitrary Entrywise Dependence and
Estimation of Markov Transition Kernel [4.360281374698232]
This paper considers a general framework of noisy low-rank-plus-sparse matrix recovery.
We propose an incoherent-constrained least-square estimator and prove its tightness both in the sense of deterministic lower bound and matching minimax risks.
We then showcase the applications of our framework to several important statistical machine learning problems.
arXiv Detail & Related papers (2024-01-04T20:13:23Z) - Spectral Entry-wise Matrix Estimation for Low-Rank Reinforcement
Learning [53.445068584013896]
We study matrix estimation problems arising in reinforcement learning (RL) with low-rank structure.
In low-rank bandits, the matrix to be recovered specifies the expected arm rewards, and for low-rank Markov Decision Processes (MDPs), it may for example characterize the transition kernel of the MDP.
We show that simple spectral-based matrix estimation approaches efficiently recover the singular subspaces of the matrix and exhibit nearly-minimal entry-wise error.
arXiv Detail & Related papers (2023-10-10T17:06:41Z) - Mode-wise Principal Subspace Pursuit and Matrix Spiked Covariance Model [13.082805815235975]
We introduce a novel framework called Mode-wise Principal Subspace Pursuit (MOP-UP) to extract hidden variations in both the row and column dimensions for matrix data.
The effectiveness and practical merits of the proposed framework are demonstrated through experiments on both simulated and real datasets.
arXiv Detail & Related papers (2023-07-02T13:59:47Z) - Semi-Supervised Subspace Clustering via Tensor Low-Rank Representation [64.49871502193477]
We propose a novel semi-supervised subspace clustering method, which is able to simultaneously augment the initial supervisory information and construct a discriminative affinity matrix.
Comprehensive experimental results on six commonly-used benchmark datasets demonstrate the superiority of our method over state-of-the-art methods.
arXiv Detail & Related papers (2022-05-21T01:47:17Z) - Solving weakly supervised regression problem using low-rank manifold
regularization [77.34726150561087]
We solve a weakly supervised regression problem.
Under "weakly" we understand that for some training points the labels are known, for some unknown, and for others uncertain due to the presence of random noise or other reasons such as lack of resources.
In the numerical section, we applied the suggested method to artificial and real datasets using Monte-Carlo modeling.
arXiv Detail & Related papers (2021-04-13T23:21:01Z) - Analysis of Truncated Orthogonal Iteration for Sparse Eigenvector
Problems [78.95866278697777]
We propose two variants of the Truncated Orthogonal Iteration to compute multiple leading eigenvectors with sparsity constraints simultaneously.
We then apply our algorithms to solve the sparse principle component analysis problem for a wide range of test datasets.
arXiv Detail & Related papers (2021-03-24T23:11:32Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
We propose a simple and efficient unsupervised feature selection method, by combining reconstruction error with $l_2,p$-norm regularization.
We present an efficient optimization algorithm to solve the proposed unsupervised model, and analyse the convergence and computational complexity of the algorithm theoretically.
arXiv Detail & Related papers (2020-12-29T04:08:38Z) - Robust Matrix Completion with Mixed Data Types [0.0]
We consider the problem of recovering a structured low rank matrix with partially observed entries with mixed data types.
Most approaches assume that there is only one underlying distribution and the low rank constraint is regularized by the matrix Schatten Norm.
We propose a computationally feasible statistical approach with strong recovery guarantees along with an algorithmic framework suited for parallelization to recover a low rank matrix with partially observed entries for mixed data types in one step.
arXiv Detail & Related papers (2020-05-25T21:35:10Z) - Supervised Hyperalignment for multi-subject fMRI data alignment [81.8694682249097]
This paper proposes a Supervised Hyperalignment (SHA) method to ensure better functional alignment for MVP analysis.
Experiments on multi-subject datasets demonstrate that SHA method achieves up to 19% better performance for multi-class problems.
arXiv Detail & Related papers (2020-01-09T09:17:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.