論文の概要: HUE Dataset: High-Resolution Event and Frame Sequences for Low-Light Vision
- arxiv url: http://arxiv.org/abs/2410.19164v1
- Date: Thu, 24 Oct 2024 21:15:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-28 13:36:41.057326
- Title: HUE Dataset: High-Resolution Event and Frame Sequences for Low-Light Vision
- Title(参考訳): HUEデータセット:低照度ビジョンのための高分解能イベントとフレームシーケンス
- Authors: Burak Ercan, Onur Eker, Aykut Erdem, Erkut Erdem,
- Abstract要約: 低照度条件下での高分解能イベントとフレームシーケンスのコレクションであるHUEデータセットを紹介する。
私たちのデータセットには、屋内、都市景観、トワイライト、夜、運転、制御されたシナリオを含む106のシーケンスが含まれています。
我々は定性評価と定量的評価の両方を用いて、最先端の低照度化と事象に基づく画像再構成手法を評価する。
- 参考スコア(独自算出の注目度): 16.432164340779266
- License:
- Abstract: Low-light environments pose significant challenges for image enhancement methods. To address these challenges, in this work, we introduce the HUE dataset, a comprehensive collection of high-resolution event and frame sequences captured in diverse and challenging low-light conditions. Our dataset includes 106 sequences, encompassing indoor, cityscape, twilight, night, driving, and controlled scenarios, each carefully recorded to address various illumination levels and dynamic ranges. Utilizing a hybrid RGB and event camera setup. we collect a dataset that combines high-resolution event data with complementary frame data. We employ both qualitative and quantitative evaluations using no-reference metrics to assess state-of-the-art low-light enhancement and event-based image reconstruction methods. Additionally, we evaluate these methods on a downstream object detection task. Our findings reveal that while event-based methods perform well in specific metrics, they may produce false positives in practical applications. This dataset and our comprehensive analysis provide valuable insights for future research in low-light vision and hybrid camera systems.
- Abstract(参考訳): 低照度環境は画像強調手法に重大な課題をもたらす。
これらの課題に対処するため、本研究では、多彩で挑戦的な低照度条件下でキャプチャされた高解像度イベントとフレームシーケンスの包括的コレクションであるHUEデータセットを紹介する。
我々のデータセットには、106のシーケンスが含まれており、屋内、都市景観、トワイライト、夜間、運転、制御されたシナリオが含まれており、それぞれが様々な照明レベルとダイナミックレンジに対処するために慎重に記録されている。
ハイブリッドRGBとイベントカメラのセットアップを利用する。
高解像度のイベントデータと相補的なフレームデータを組み合わせたデータセットを収集する。
我々は,非参照指標を用いた定性評価と定量的評価の両方を用いて,最先端の低照度化と事象に基づく画像再構成手法を評価する。
さらに,これらの手法を下流オブジェクト検出タスクで評価する。
これらの結果から, イベントベースの手法は, 特定の指標において良好に機能するが, 実用上は偽陽性が生じる可能性が示唆された。
このデータセットと包括的分析は、低照度ビジョンとハイブリッドカメラシステムにおける将来の研究に有用な洞察を提供する。
関連論文リスト
- Super-resolving Real-world Image Illumination Enhancement: A New Dataset and A Conditional Diffusion Model [43.93772529301279]
本稿では,効率的な条件拡散確率モデルに基づくSRRIIEデータセットを提案する。
画像はILDCカメラと光学ズームレンズで撮影し、露光レベルは6EVから0EV、ISOレベルは50~12800である。
既存の手法は, 複雑なノイズから復元した画像の構造やシャープさを保ちつつも, 有効性は低いことが示唆された。
論文 参考訳(メタデータ) (2024-10-16T18:47:04Z) - QueensCAMP: an RGB-D dataset for robust Visual SLAM [0.0]
本稿では,VSLAMシステムのロバスト性を評価するために設計された新しいRGB-Dデータセットを提案する。
データセットは、動的オブジェクト、動きのぼかし、様々な照明を備えた現実世界の屋内シーンで構成されている。
我々は、任意の画像にカメラ障害を注入するためのオープンソースのスクリプトを提供し、さらなるカスタマイズを可能にします。
論文 参考訳(メタデータ) (2024-10-16T12:58:08Z) - Event-assisted Low-Light Video Object Segmentation [47.28027938310957]
イベントカメラは、このような低照度条件下でオブジェクトの可視性を高め、VOSメソッドを支援することを約束する。
本稿では、イベントカメラデータを利用してセグメンテーション精度を向上させる、低照度VOSに適した先駆的なフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-02T13:41:22Z) - Multi-Modal Dataset Acquisition for Photometrically Challenging Object [56.30027922063559]
本稿では,3次元視覚タスクにおける現在のデータセットの限界について,精度,サイズ,リアリズム,および光度に挑戦する対象に対する適切な画像モダリティの観点から検討する。
既存の3次元認識と6次元オブジェクトポーズデータセットを強化する新しいアノテーションと取得パイプラインを提案する。
論文 参考訳(メタデータ) (2023-08-21T10:38:32Z) - A Multi-purpose Real Haze Benchmark with Quantifiable Haze Levels and
Ground Truth [61.90504318229845]
本稿では,ハズフリー画像とその場でのハズ密度測定を併用した,最初の実画像ベンチマークデータセットを提案する。
このデータセットはコントロールされた環境で生成され、プロの煙発生装置がシーン全体を覆っている。
このデータセットのサブセットは、CVPR UG2 2022 チャレンジの Haze Track における Object Detection に使用されている。
論文 参考訳(メタデータ) (2022-06-13T19:14:06Z) - NOD: Taking a Closer Look at Detection under Extreme Low-Light
Conditions with Night Object Detection Dataset [25.29013780731876]
低い光は、以前考えられていたよりもマシン認知にとって困難である。
夜間に街路で撮影されたダイナミックなシーンを示す大規模なデータセットを提示する。
本稿では,画像強調モジュールをオブジェクト検出フレームワークと2つの新しいデータ拡張手法に組み込むことを提案する。
論文 参考訳(メタデータ) (2021-10-20T03:44:04Z) - Salient Objects in Clutter [130.63976772770368]
本稿では,既存の正当性オブジェクト検出(SOD)データセットの重大な設計バイアスを特定し,対処する。
この設計バイアスは、既存のデータセットで評価した場合、最先端のSODモデルのパフォーマンスの飽和につながった。
我々は,新しい高品質データセットを提案し,前回のsaliencyベンチマークを更新する。
論文 参考訳(メタデータ) (2021-05-07T03:49:26Z) - Lighting the Darkness in the Deep Learning Era [118.35081853500411]
低照度画像強調(LLIE)は、照明の弱い環境で撮影された画像の知覚や解釈性を改善することを目的としている。
この分野における最近の進歩は、ディープラーニングベースのソリューションが支配的です。
アルゴリズム分類から未解決の未解決問題まで,さまざまな側面をカバーする包括的な調査を行う。
論文 参考訳(メタデータ) (2021-04-21T19:12:19Z) - Learning Monocular Dense Depth from Events [53.078665310545745]
イベントカメラは、強度フレームではなく、非同期イベントのストリームの形式で輝度を変化させる。
最近の学習に基づくアプローチは、単眼深度予測のようなイベントベースのデータに適用されている。
本稿では,この課題を解決するための繰り返しアーキテクチャを提案し,標準フィードフォワード法よりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-10-16T12:36:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。