Noise Adaption Network for Morse Code Image Classification
- URL: http://arxiv.org/abs/2410.19180v1
- Date: Thu, 24 Oct 2024 22:24:52 GMT
- Title: Noise Adaption Network for Morse Code Image Classification
- Authors: Xiaxia Wang, XueSong Leng, Guoping Xu,
- Abstract summary: The transmission of Morse code images faces challenges due to diverse noises and distortions.
Existing methodologies predominantly concentrate on categorizing Morse code images affected by a single type of noise.
We propose a novel two-stage approach, termed the Noise Adaptation Network (NANet), for Morse code image classification.
- Score: 0.3031375888004876
- License:
- Abstract: The escalating significance of information security has underscored the per-vasive role of encryption technology in safeguarding communication con-tent. Morse code, a well-established and effective encryption method, has found widespread application in telegraph communication and various do-mains. However, the transmission of Morse code images faces challenges due to diverse noises and distortions, thereby hindering comprehensive clas-sification outcomes. Existing methodologies predominantly concentrate on categorizing Morse code images affected by a single type of noise, neglecting the multitude of scenarios that noise pollution can generate. To overcome this limitation, we propose a novel two-stage approach, termed the Noise Adaptation Network (NANet), for Morse code image classification. Our method involves exclusive training on pristine images while adapting to noisy ones through the extraction of critical information unaffected by noise. In the initial stage, we introduce a U-shaped network structure designed to learn representative features and denoise images. Subsequently, the second stage employs a deep convolutional neural network for classification. By leveraging the denoising module from the first stage, our approach achieves enhanced accuracy and robustness in the subsequent classification phase. We conducted an evaluation of our approach on a diverse dataset, encom-passing Gaussian, salt-and-pepper, and uniform noise variations. The results convincingly demonstrate the superiority of our methodology over existing approaches. The datasets are available on https://github.com/apple1986/MorseCodeImageClassify
Related papers
- Policy Gradient-Driven Noise Mask [3.69758875412828]
We propose a novel pretraining pipeline that learns to generate conditional noise masks specifically tailored to improve performance on multi-modal and multi-organ datasets.
A key aspect is that the policy network's role is limited to obtaining an intermediate (or heated) model before fine-tuning.
Results demonstrate that fine-tuning the intermediate models consistently outperforms conventional training algorithms on both classification and generalization to unseen concept tasks.
arXiv Detail & Related papers (2024-04-29T23:53:42Z) - Masked Image Training for Generalizable Deep Image Denoising [53.03126421917465]
We present a novel approach to enhance the generalization performance of denoising networks.
Our method involves masking random pixels of the input image and reconstructing the missing information during training.
Our approach exhibits better generalization ability than other deep learning models and is directly applicable to real-world scenarios.
arXiv Detail & Related papers (2023-03-23T09:33:44Z) - NLIP: Noise-robust Language-Image Pre-training [95.13287735264937]
We propose a principled Noise-robust Language-Image Pre-training framework (NLIP) to stabilize pre-training via two schemes: noise-harmonization and noise-completion.
Our NLIP can alleviate the common noise effects during image-text pre-training in a more efficient way.
arXiv Detail & Related papers (2022-12-14T08:19:30Z) - Synthetic Aperture Radar Image Change Detection via Layer
Attention-Based Noise-Tolerant Network [36.860069663770226]
We propose a layer attention-based noise-tolerant network, termed LANTNet.
In particular, we design a layer attention module that adaptively weights the feature of different convolution layers.
The experimental results on three SAR datasets show that the proposed LANTNet performs better than several state-of-the-art methods.
arXiv Detail & Related papers (2022-08-09T01:04:39Z) - Deep Semantic Statistics Matching (D2SM) Denoising Network [70.01091467628068]
We introduce the Deep Semantic Statistics Matching (D2SM) Denoising Network.
It exploits semantic features of pretrained classification networks, then it implicitly matches the probabilistic distribution of clear images at the semantic feature space.
By learning to preserve the semantic distribution of denoised images, we empirically find our method significantly improves the denoising capabilities of networks.
arXiv Detail & Related papers (2022-07-19T14:35:42Z) - Neighbor2Neighbor: Self-Supervised Denoising from Single Noisy Images [98.82804259905478]
We present Neighbor2Neighbor to train an effective image denoising model with only noisy images.
In detail, input and target used to train a network are images sub-sampled from the same noisy image.
A denoising network is trained on sub-sampled training pairs generated in the first stage, with a proposed regularizer as additional loss for better performance.
arXiv Detail & Related papers (2021-01-08T02:03:25Z) - Multi-Stage Residual Hiding for Image-into-Audio Steganography [40.669605041776954]
We present a cross-modal steganography method for hiding image content into audio carriers.
The proposed framework makes the controlling of payload capacity more flexible.
Experiments suggest that modifications to the carrier are unnoticeable by human listeners.
arXiv Detail & Related papers (2021-01-06T05:01:45Z) - Dual Adversarial Network: Toward Real-world Noise Removal and Noise
Generation [52.75909685172843]
Real-world image noise removal is a long-standing yet very challenging task in computer vision.
We propose a novel unified framework to deal with the noise removal and noise generation tasks.
Our method learns the joint distribution of the clean-noisy image pairs.
arXiv Detail & Related papers (2020-07-12T09:16:06Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
Plant diseases serve as one of main threats to food security and crop production.
One popular approach is to transform this problem as a leaf image classification task, which can be addressed by the powerful convolutional neural networks (CNNs)
We propose a novel framework that incorporates rectified meta-learning module into common CNN paradigm to train a noise-robust deep network without using extra supervision information.
arXiv Detail & Related papers (2020-03-17T09:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.