論文の概要: Learning Diffusion Policies from Demonstrations For Compliant Contact-rich Manipulation
- arxiv url: http://arxiv.org/abs/2410.19235v1
- Date: Fri, 25 Oct 2024 00:56:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-28 13:35:59.813860
- Title: Learning Diffusion Policies from Demonstrations For Compliant Contact-rich Manipulation
- Title(参考訳): 整合性コンタクトリッチマニピュレーションの実証から拡散反応を学習する
- Authors: Malek Aburub, Cristian C. Beltran-Hernandez, Tatsuya Kamijo, Masashi Hamaya,
- Abstract要約: 本稿では,DIPCOM(Diffusion Policies for Compliant Manipulation)を提案する。
生成拡散モデルを活用することで、カルト効果のポーズを予測し、腕の硬さを調整し、必要な力を維持できる政策を開発する。
提案手法は,マルチモーダル分布モデリングによる力制御を強化し,コンプライアンス制御における拡散ポリシの統合を改善し,実世界のタスクにおいてその効果を示すことによって,これまでの作業を拡張する。
- 参考スコア(独自算出の注目度): 5.1245307851495
- License:
- Abstract: Robots hold great promise for performing repetitive or hazardous tasks, but achieving human-like dexterity, especially in contact-rich and dynamic environments, remains challenging. Rigid robots, which rely on position or velocity control, often struggle with maintaining stable contact and applying consistent force in force-intensive tasks. Learning from Demonstration has emerged as a solution, but tasks requiring intricate maneuvers, such as powder grinding, present unique difficulties. This paper introduces Diffusion Policies For Compliant Manipulation (DIPCOM), a novel diffusion-based framework designed for compliant control tasks. By leveraging generative diffusion models, we develop a policy that predicts Cartesian end-effector poses and adjusts arm stiffness to maintain the necessary force. Our approach enhances force control through multimodal distribution modeling, improves the integration of diffusion policies in compliance control, and extends our previous work by demonstrating its effectiveness in real-world tasks. We present a detailed comparison between our framework and existing methods, highlighting the advantages and best practices for deploying diffusion-based compliance control.
- Abstract(参考訳): ロボットは繰り返しや危険なタスクを実行することを大いに約束するが、人間のような器用さ、特に接触に富む、ダイナミックな環境では、達成は難しいままだ。
位置制御や速度制御に頼っている剛体ロボットは、安定した接触を維持し、力集約的なタスクに一貫した力を適用するのにしばしば苦労する。
実証から学ぶことは解法として現れてきたが、粉体研削のような複雑な操作を必要とするタスクは独特な困難を呈している。
本稿では,DIPCOM(Diffusion Policies for Compliant Manipulation)を提案する。
生成拡散モデルを活用することで、カルト効果のポーズを予測し、腕の硬さを調整し、必要な力を維持できる政策を開発する。
提案手法は,マルチモーダル分布モデリングによる力制御を強化し,コンプライアンス制御における拡散ポリシの統合を改善し,実世界のタスクにおいてその有効性を示すことによって,これまでの作業を拡張した。
本稿では,フレームワークと既存手法の詳細な比較を行い,拡散型コンプライアンス制御の展開における利点とベストプラクティスを明らかにする。
関連論文リスト
- Guided Reinforcement Learning for Robust Multi-Contact Loco-Manipulation [12.377289165111028]
強化学習(Reinforcement Learning, RL)は、各タスクに合わせた細かなマルコフ決定プロセス(MDP)設計を必要とすることが多い。
本研究は,マルチコンタクトロコ操作タスクの動作合成と制御に対する体系的アプローチを提案する。
モデルベース軌道から生成されたタスク毎の1つの実演のみを用いて,RLポリシーを訓練するためのタスク非依存のMDPを定義する。
論文 参考訳(メタデータ) (2024-10-17T17:46:27Z) - Consistency Policy: Accelerated Visuomotor Policies via Consistency Distillation [31.534668378308822]
一貫性ポリシ(Consistency Policy)は、バイスモータロボット制御の学習のための拡散ポリシの高速かつ類似した代替手段である。
高速な推論速度により、Consistency Policyはリソース制約されたロボットセットアップで低レイテンシの決定を可能にする。
このパフォーマンスを実現するための重要な設計決定は、一貫性の目標の選択、初期サンプルのばらつきの低減、事前設定された連鎖ステップの選択である。
論文 参考訳(メタデータ) (2024-05-13T06:53:42Z) - Growing Q-Networks: Solving Continuous Control Tasks with Adaptive Control Resolution [51.83951489847344]
ロボット工学の応用において、スムーズな制御信号はシステム摩耗とエネルギー効率を減らすために一般的に好まれる。
本研究では,離散的な動作空間を粗い状態から細かい制御分解能まで拡大することにより,この性能ギャップを埋めることを目的とする。
我々の研究は、値分解とアダプティブ・コントロール・リゾリューションが組み合わさることで、単純な批判のみのアルゴリズムが得られ、連続制御タスクにおいて驚くほど高い性能が得られることを示唆している。
論文 参考訳(メタデータ) (2024-04-05T17:58:37Z) - Maximum Causal Entropy Inverse Constrained Reinforcement Learning [3.409089945290584]
本稿では,最大因果エントロピーの原理を用いて制約と最適ポリシーを学習する手法を提案する。
得られた報酬と制約違反数を評価することで,学習方針の有効性を評価する。
本手法は様々なタスクや環境にまたがって最先端の手法より優れていることが示されている。
論文 参考訳(メタデータ) (2023-05-04T14:18:19Z) - Distributionally Adaptive Meta Reinforcement Learning [85.17284589483536]
テスト時間分布シフトの下で適切に振る舞うメタRLアルゴリズムのフレームワークを開発する。
我々の枠組みは、分布のロバスト性に対する適応的なアプローチを中心とし、様々なレベルの分布シフトに対してロバストであるようメタポリスの人口を訓練する。
本研究は, 分散シフト下での後悔を改善するための枠組みを示し, シミュレーションロボティクス問題に対する効果を実証的に示す。
論文 参考訳(メタデータ) (2022-10-06T17:55:09Z) - Scalable Task-Driven Robotic Swarm Control via Collision Avoidance and
Learning Mean-Field Control [23.494528616672024]
我々は、最先端平均場制御技術を用いて、多くのエージェントSwarm制御を分散の古典的な単一エージェント制御に変換する。
そこで我々は,衝突回避と平均場制御の学習を,知的ロボット群動作を牽引的に設計するための統一的な枠組みに統合する。
論文 参考訳(メタデータ) (2022-09-15T16:15:04Z) - Diffusion Policies as an Expressive Policy Class for Offline
Reinforcement Learning [70.20191211010847]
オフライン強化学習(RL)は、以前に収集した静的データセットを使って最適なポリシーを学ぶことを目的としている。
本稿では,条件付き拡散モデルを用いたディフュージョンQ-ラーニング(Diffusion-QL)を提案する。
本手法はD4RLベンチマークタスクの大部分において最先端の性能を実現することができることを示す。
論文 参考訳(メタデータ) (2022-08-12T09:54:11Z) - Enforcing robust control guarantees within neural network policies [76.00287474159973]
本稿では、ニューラルネットワークによってパラメータ化され、ロバスト制御と同じ証明可能なロバスト性基準を適用した、一般的な非線形制御ポリシークラスを提案する。
提案手法は,複数の領域において有効であり,既存のロバスト制御法よりも平均ケース性能が向上し,(非ロバスト)深部RL法よりも最悪のケース安定性が向上した。
論文 参考訳(メタデータ) (2020-11-16T17:14:59Z) - Deep Reinforcement Learning for Contact-Rich Skills Using Compliant
Movement Primitives [0.0]
産業用ロボットのさらなる統合は、柔軟性、適応性、意思決定スキルの制限によって妨げられている。
収束と一般化を容易にする異なるプルーニング手法を提案する。
提案手法は,空間,サイズ,形状,および密接に関連するシナリオに不変な挿入スキルを学習できることを実証する。
論文 参考訳(メタデータ) (2020-08-30T17:29:43Z) - Efficient Empowerment Estimation for Unsupervised Stabilization [75.32013242448151]
エンパワーメント原理は 直立位置での 力学系の教師なし安定化を可能にする
本稿では,ガウスチャネルとして動的システムのトレーニング可能な表現に基づく代替解を提案する。
提案手法は, サンプルの複雑さが低く, 訓練時より安定であり, エンパワーメント機能の本質的特性を有し, 画像からエンパワーメントを推定できることを示す。
論文 参考訳(メタデータ) (2020-07-14T21:10:16Z) - Learning Compliance Adaptation in Contact-Rich Manipulation [81.40695846555955]
本稿では,コンタクトリッチタスクに必要な力プロファイルの予測モデルを学習するための新しいアプローチを提案する。
このアプローチは、双方向Gated Recurrent Units (Bi-GRU) に基づく異常検出と適応力/インピーダンス制御を組み合わせたものである。
論文 参考訳(メタデータ) (2020-05-01T05:23:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。