Investigating the Role of Prompting and External Tools in Hallucination Rates of Large Language Models
- URL: http://arxiv.org/abs/2410.19385v1
- Date: Fri, 25 Oct 2024 08:34:53 GMT
- Title: Investigating the Role of Prompting and External Tools in Hallucination Rates of Large Language Models
- Authors: Liam Barkley, Brink van der Merwe,
- Abstract summary: Large Language Models (LLMs) are powerful computational models trained on extensive corpora of human-readable text, enabling them to perform general-purpose language understanding and generation.
Despite these successes, LLMs often produce inaccuracies, commonly referred to as hallucinations.
This paper provides an empirical evaluation of different prompting strategies and frameworks aimed at reducing hallucinations in LLMs.
- Score: 0.0
- License:
- Abstract: Large Language Models (LLMs) are powerful computational models trained on extensive corpora of human-readable text, enabling them to perform general-purpose language understanding and generation. LLMs have garnered significant attention in both industry and academia due to their exceptional performance across various natural language processing (NLP) tasks. Despite these successes, LLMs often produce inaccuracies, commonly referred to as hallucinations. Prompt engineering, the process of designing and formulating instructions for LLMs to perform specific tasks, has emerged as a key approach to mitigating hallucinations. This paper provides a comprehensive empirical evaluation of different prompting strategies and frameworks aimed at reducing hallucinations in LLMs. Various prompting techniques are applied to a broad set of benchmark datasets to assess the accuracy and hallucination rate of each method. Additionally, the paper investigates the influence of tool-calling agents (LLMs augmented with external tools to enhance their capabilities beyond language generation) on hallucination rates in the same benchmarks. The findings demonstrate that the optimal prompting technique depends on the type of problem, and that simpler techniques often outperform more complex methods in reducing hallucinations. Furthermore, it is shown that LLM agents can exhibit significantly higher hallucination rates due to the added complexity of external tool usage.
Related papers
- LLM Hallucination Reasoning with Zero-shot Knowledge Test [10.306443936136425]
We introduce a new task, Hallucination Reasoning, which classifies LLM-generated text into one of three categories: aligned, misaligned, and fabricated.
Our experiments conducted on new datasets demonstrate the effectiveness of our method in hallucination reasoning.
arXiv Detail & Related papers (2024-11-14T18:55:26Z) - Mitigating Hallucinations of Large Language Models in Medical Information Extraction via Contrastive Decoding [92.32881381717594]
We introduce ALternate Contrastive Decoding (ALCD) to solve hallucination issues in medical information extraction tasks.
ALCD demonstrates significant improvements in resolving hallucination issues compared to conventional decoding methods.
arXiv Detail & Related papers (2024-10-21T07:19:19Z) - Iter-AHMCL: Alleviate Hallucination for Large Language Model via Iterative Model-level Contrastive Learning [16.883679810267342]
Iterative Model-level Contrastive Learning (Iter-AHMCL) to address hallucination.
This paper introduces a novel approach called Iterative Model-level Contrastive Learning (Iter-AHMCL) to address hallucination.
arXiv Detail & Related papers (2024-10-16T00:15:40Z) - Unsupervised Real-Time Hallucination Detection based on the Internal States of Large Language Models [12.27217471495276]
Hallucinations in large language models (LLMs) produce responses that are coherent but factually inaccurate.
We present MIND, an unsupervised training framework that leverages the internal states of LLMs for real-time hallucination detection.
We also present HELM, a new benchmark for evaluating hallucination detection across multiple LLMs.
arXiv Detail & Related papers (2024-03-11T05:51:03Z) - Retrieve Only When It Needs: Adaptive Retrieval Augmentation for Hallucination Mitigation in Large Language Models [68.91592125175787]
Hallucinations pose a significant challenge for the practical implementation of large language models (LLMs)
We present Rowen, a novel approach that enhances LLMs with a selective retrieval augmentation process tailored to address hallucinations.
arXiv Detail & Related papers (2024-02-16T11:55:40Z) - A Comprehensive Survey of Hallucination Mitigation Techniques in Large
Language Models [7.705767540805267]
Large Language Models (LLMs) continue to advance in their ability to write human-like text.
A key challenge remains around their tendency to hallucinate generating content that appears factual but is ungrounded.
This paper presents a survey of over 32 techniques developed to mitigate hallucination in LLMs.
arXiv Detail & Related papers (2024-01-02T17:56:30Z) - Enhancing Uncertainty-Based Hallucination Detection with Stronger Focus [99.33091772494751]
Large Language Models (LLMs) have gained significant popularity for their impressive performance across diverse fields.
LLMs are prone to hallucinate untruthful or nonsensical outputs that fail to meet user expectations.
We propose a novel reference-free, uncertainty-based method for detecting hallucinations in LLMs.
arXiv Detail & Related papers (2023-11-22T08:39:17Z) - Improving Factual Consistency of Text Summarization by Adversarially
Decoupling Comprehension and Embellishment Abilities of LLMs [67.56087611675606]
Large language models (LLMs) generate summaries that are factually inconsistent with original articles.
These hallucinations are challenging to detect through traditional methods.
We propose an adversarially DEcoupling method to disentangle the abilities of LLMs (DECENT)
arXiv Detail & Related papers (2023-10-30T08:40:16Z) - AutoHall: Automated Hallucination Dataset Generation for Large Language Models [56.92068213969036]
This paper introduces a method for automatically constructing model-specific hallucination datasets based on existing fact-checking datasets called AutoHall.
We also propose a zero-resource and black-box hallucination detection method based on self-contradiction.
arXiv Detail & Related papers (2023-09-30T05:20:02Z) - Siren's Song in the AI Ocean: A Survey on Hallucination in Large
Language Models [116.01843550398183]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks.
LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge.
arXiv Detail & Related papers (2023-09-03T16:56:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.