Evaluation of strategies for efficient rate-distortion NeRF streaming
- URL: http://arxiv.org/abs/2410.19459v1
- Date: Fri, 25 Oct 2024 10:40:03 GMT
- Title: Evaluation of strategies for efficient rate-distortion NeRF streaming
- Authors: Pedro Martin, António Rodrigues, João Ascenso, Maria Paula Queluz,
- Abstract summary: Neural Radiance Fields (NeRF) have revolutionized the field of 3D visual representation by enabling highly realistic and detailed scene reconstructions from a sparse set of images.
Despite its advancements, the efficient streaming of NeRF content remains a significant challenge due to the large amount of data involved.
This paper investigates the rate-distortion performance of two NeRF streaming strategies: pixel-based and neural network (NN) parameter-based streaming.
- Score: 4.117347527143616
- License:
- Abstract: Neural Radiance Fields (NeRF) have revolutionized the field of 3D visual representation by enabling highly realistic and detailed scene reconstructions from a sparse set of images. NeRF uses a volumetric functional representation that maps 3D points to their corresponding colors and opacities, allowing for photorealistic view synthesis from arbitrary viewpoints. Despite its advancements, the efficient streaming of NeRF content remains a significant challenge due to the large amount of data involved. This paper investigates the rate-distortion performance of two NeRF streaming strategies: pixel-based and neural network (NN) parameter-based streaming. While in the former, images are coded and then transmitted throughout the network, in the latter, the respective NeRF model parameters are coded and transmitted instead. This work also highlights the trade-offs in complexity and performance, demonstrating that the NN parameter-based strategy generally offers superior efficiency, making it suitable for one-to-many streaming scenarios.
Related papers
- NeRF-Casting: Improved View-Dependent Appearance with Consistent Reflections [57.63028964831785]
Recent works have improved NeRF's ability to render detailed specular appearance of distant environment illumination, but are unable to synthesize consistent reflections of closer content.
We address these issues with an approach based on ray tracing.
Instead of querying an expensive neural network for the outgoing view-dependent radiance at points along each camera ray, our model casts rays from these points and traces them through the NeRF representation to render feature vectors.
arXiv Detail & Related papers (2024-05-23T17:59:57Z) - Efficient View Synthesis with Neural Radiance Distribution Field [61.22920276806721]
We propose a new representation called Neural Radiance Distribution Field (NeRDF) that targets efficient view synthesis in real-time.
We use a small network similar to NeRF while preserving the rendering speed with a single network forwarding per pixel as in NeLF.
Experiments show that our proposed method offers a better trade-off among speed, quality, and network size than existing methods.
arXiv Detail & Related papers (2023-08-22T02:23:28Z) - Registering Neural Radiance Fields as 3D Density Images [55.64859832225061]
We propose to use universal pre-trained neural networks that can be trained and tested on different scenes.
We demonstrate that our method, as a global approach, can effectively register NeRF models.
arXiv Detail & Related papers (2023-05-22T09:08:46Z) - Learning Neural Duplex Radiance Fields for Real-Time View Synthesis [33.54507228895688]
We propose a novel approach to distill and bake NeRFs into highly efficient mesh-based neural representations.
We demonstrate the effectiveness and superiority of our approach via extensive experiments on a range of standard datasets.
arXiv Detail & Related papers (2023-04-20T17:59:52Z) - Aug-NeRF: Training Stronger Neural Radiance Fields with Triple-Level
Physically-Grounded Augmentations [111.08941206369508]
We propose Augmented NeRF (Aug-NeRF), which for the first time brings the power of robust data augmentations into regularizing the NeRF training.
Our proposal learns to seamlessly blend worst-case perturbations into three distinct levels of the NeRF pipeline.
Aug-NeRF effectively boosts NeRF performance in both novel view synthesis and underlying geometry reconstruction.
arXiv Detail & Related papers (2022-07-04T02:27:07Z) - NeRFusion: Fusing Radiance Fields for Large-Scale Scene Reconstruction [50.54946139497575]
We propose NeRFusion, a method that combines the advantages of NeRF and TSDF-based fusion techniques to achieve efficient large-scale reconstruction and photo-realistic rendering.
We demonstrate that NeRFusion achieves state-of-the-art quality on both large-scale indoor and small-scale object scenes, with substantially faster reconstruction than NeRF and other recent methods.
arXiv Detail & Related papers (2022-03-21T18:56:35Z) - NeRF-SR: High-Quality Neural Radiance Fields using Super-Sampling [82.99453001445478]
We present NeRF-SR, a solution for high-resolution (HR) novel view synthesis with mostly low-resolution (LR) inputs.
Our method is built upon Neural Radiance Fields (NeRF) that predicts per-point density and color with a multi-layer perceptron.
arXiv Detail & Related papers (2021-12-03T07:33:47Z) - Recursive-NeRF: An Efficient and Dynamically Growing NeRF [34.768382663711705]
Recursive-NeRF is an efficient rendering and training approach for the Neural Radiance Field (NeRF) method.
Recursive-NeRF learns uncertainties for query coordinates, representing the quality of the predicted color and volumetric intensity at each level.
Our evaluation on three public datasets shows that Recursive-NeRF is more efficient than NeRF while providing state-of-the-art quality.
arXiv Detail & Related papers (2021-05-19T12:51:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.