論文の概要: Improving Inverse Folding for Peptide Design with Diversity-regularized Direct Preference Optimization
- arxiv url: http://arxiv.org/abs/2410.19471v1
- Date: Fri, 25 Oct 2024 11:04:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-28 13:37:35.540160
- Title: Improving Inverse Folding for Peptide Design with Diversity-regularized Direct Preference Optimization
- Title(参考訳): 多様性規則化直接選好最適化によるペプチド設計における逆曲げの改善
- Authors: Ryan Park, Darren J. Hsu, C. Brian Roland, Maria Korshunova, Chen Tessler, Shie Mannor, Olivia Viessmann, Bruno Trentini,
- Abstract要約: 逆折り畳みモデルは、望ましい参照構造に折り畳むアミノ酸配列を予測する。
メッセージパッシングエンコーダデコーダモデルであるProteinMPNNは、参照構造から新しいシーケンスを確実に生成するように訓練されている。
しかし、ペプチドに適用すると、これらのモデルは参照構造に折りたたみしない反復配列を生成する傾向がある。
- 参考スコア(独自算出の注目度): 33.131551374836775
- License:
- Abstract: Inverse folding models play an important role in structure-based design by predicting amino acid sequences that fold into desired reference structures. Models like ProteinMPNN, a message-passing encoder-decoder model, are trained to reliably produce new sequences from a reference structure. However, when applied to peptides, these models are prone to generating repetitive sequences that do not fold into the reference structure. To address this, we fine-tune ProteinMPNN to produce diverse and structurally consistent peptide sequences via Direct Preference Optimization (DPO). We derive two enhancements to DPO: online diversity regularization and domain-specific priors. Additionally, we develop a new understanding on improving diversity in decoder models. When conditioned on OpenFold generated structures, our fine-tuned models achieve state-of-the-art structural similarity scores, improving base ProteinMPNN by at least 8%. Compared to standard DPO, our regularized method achieves up to 20% higher sequence diversity with no loss in structural similarity score.
- Abstract(参考訳): 逆折り畳みモデルは、所望の基準構造に折り畳まれるアミノ酸配列を予測することによって、構造に基づく設計において重要な役割を果たす。
メッセージパッシングエンコーダデコーダモデルであるProteinMPNNのようなモデルは、参照構造から新しいシーケンスを確実に生成するように訓練されている。
しかし、ペプチドに適用すると、これらのモデルは参照構造に折りたたみしない反復配列を生成する傾向にある。
そこで本研究では,直接選好最適化(DPO)を用いて,タンパク質MPNNを微調整し,多種多様かつ構造的に一貫したペプチド配列を生成する。
DPOには、オンラインの多様性の正規化とドメイン固有の事前化という2つの拡張がある。
さらに,デコーダモデルの多様性向上に関する新たな理解を深める。
OpenFoldが生成した構造を条件にすると、我々の微調整されたモデルは最先端の構造的類似度スコアを達成し、ベースとなるProteinMPNNを少なくとも8%改善する。
標準DPOと比較して,本手法は構造類似度スコアを損なうことなく,最大20%高いシーケンス多様性が得られる。
関連論文リスト
- Reinforcement learning on structure-conditioned categorical diffusion for protein inverse folding [0.0]
逆折り畳みは、複数の列が同じ構造に折り畳むことができる1対多の問題である。
RL-DIFは、逆折り畳みのカテゴリー的拡散モデルであり、シーケンス回復に基づいて事前訓練され、強化学習によって調整される。
実験の結果、RL-DIFはCATH 4.2で29%の折りたたみ可能な多様性を達成できることが示された。
論文 参考訳(メタデータ) (2024-10-22T16:50:34Z) - DPLM-2: A Multimodal Diffusion Protein Language Model [75.98083311705182]
DPLM-2は, 離散拡散タンパク質言語モデル(DPLM)を拡張し, 配列と構造の両方に適合する多モーダルタンパク質基盤モデルである。
DPLM-2は、配列と構造、およびその限界と条件の結合分布を学習する。
実験によりDPLM-2は高度に互換性のあるアミノ酸配列とそれに対応する3D構造を同時に生成できることが示された。
論文 参考訳(メタデータ) (2024-10-17T17:20:24Z) - Sequence-Augmented SE(3)-Flow Matching For Conditional Protein Backbone Generation [55.93511121486321]
タンパク質構造生成のための新しいシーケンス条件付きフローマッチングモデルFoldFlow-2を紹介する。
我々は、以前の作業のPDBデータセットよりも桁違いに大きい新しいデータセットでFoldFlow-2を大規模にトレーニングします。
我々はFoldFlow-2が従来のタンパク質構造に基づく生成モデルよりも優れていることを実証的に観察した。
論文 参考訳(メタデータ) (2024-05-30T17:53:50Z) - DecompOpt: Controllable and Decomposed Diffusion Models for Structure-based Molecular Optimization [49.85944390503957]
DecompOptは、制御可能・拡散モデルに基づく構造に基づく分子最適化手法である。
DecompOptは強いde novoベースラインよりも優れた特性を持つ分子を効率よく生成できることを示す。
論文 参考訳(メタデータ) (2024-03-07T02:53:40Z) - Protein Design with Guided Discrete Diffusion [67.06148688398677]
タンパク質設計における一般的なアプローチは、生成モデルと条件付きサンプリングのための識別モデルを組み合わせることである。
離散拡散モデルのためのガイダンス手法であるdiffusioN Optimized Smpling (NOS)を提案する。
NOSは、構造に基づく手法の重要な制限を回避し、シーケンス空間で直接設計を行うことができる。
論文 参考訳(メタデータ) (2023-05-31T16:31:24Z) - AlphaFold Distillation for Protein Design [25.190210443632825]
逆タンパク質の折りたたみはバイオエンジニアリングと薬物発見に不可欠である。
AlphaFoldのような前方の折りたたみモデルは、シーケンスから構造を正確に予測することで潜在的な解決策を提供する。
本稿では, 折り畳みモデルの信頼性測定値に対する知識蒸留を用いて, より高速かつエンドツーエンドの識別可能な蒸留モデルを作成することを提案する。
論文 参考訳(メタデータ) (2022-10-05T19:43:06Z) - Diversifying Design of Nucleic Acid Aptamers Using Unsupervised Machine
Learning [54.247560894146105]
短い一本鎖RNAとDNA配列(アプタマー)の逆設計は、一連の望ましい基準を満たす配列を見つけるタスクである。
我々は、Pottsモデルとして知られる教師なし機械学習モデルを用いて、制御可能なシーケンスの多様性を持つ新しい有用なシーケンスを発見することを提案する。
論文 参考訳(メタデータ) (2022-08-10T13:30:58Z) - Benchmarking deep generative models for diverse antibody sequence design [18.515971640245997]
シーケンスのみから、あるいはシーケンスと構造を共同で学習する深層生成モデルは、このタスクにおいて印象的なパフォーマンスを示している。
最近提案されたタンパク質設計のための3つの深い生成フレームワークについて考察する: (AR) 配列ベースの自己回帰生成モデル、(GVP) 正確な構造ベースのグラフニューラルネットワーク、そして3次元折り畳みのファジィでスケールフリーな表現を利用するFold2Seq。
我々は,これらのモデルを,機能的含意に高い多様性を持つ設計配列を必要とする抗体配列の計算設計のタスクに基づいてベンチマークする。
論文 参考訳(メタデータ) (2021-11-12T16:23:32Z) - EBM-Fold: Fully-Differentiable Protein Folding Powered by Energy-based
Models [53.17320541056843]
本研究では,データ駆動型生成ネットワークを用いたタンパク質構造最適化手法を提案する。
EBM-Foldアプローチは,従来のロゼッタ構造最適化ルーチンと比較して,高品質なデコイを効率よく生成できる。
論文 参考訳(メタデータ) (2021-05-11T03:40:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。