A neural network approach for solving the Monge-Ampère equation with transport boundary condition
- URL: http://arxiv.org/abs/2410.19496v1
- Date: Fri, 25 Oct 2024 11:54:00 GMT
- Title: A neural network approach for solving the Monge-Ampère equation with transport boundary condition
- Authors: Roel Hacking, Lisa Kusch, Koondanibha Mitra, Martijn Anthonissen, Wilbert IJzerman,
- Abstract summary: This paper introduces a novel neural network-based approach to solving the Monge-Ampere equation with the transport boundary condition.
We leverage multilayer perceptron networks to learn approximate solutions by minimizing a loss function that encompasses the equation's residual, boundary conditions, and convexity constraints.
- Score: 0.0
- License:
- Abstract: This paper introduces a novel neural network-based approach to solving the Monge-Amp\`ere equation with the transport boundary condition, specifically targeted towards optical design applications. We leverage multilayer perceptron networks to learn approximate solutions by minimizing a loss function that encompasses the equation's residual, boundary conditions, and convexity constraints. Our main results demonstrate the efficacy of this method, optimized using L-BFGS, through a series of test cases encompassing symmetric and asymmetric circle-to-circle, square-to-circle, and circle-to-flower reflector mapping problems. Comparative analysis with a conventional least-squares finite-difference solver reveals the competitive, and often superior, performance of our neural network approach on the test cases examined here. A comprehensive hyperparameter study further illuminates the impact of factors such as sampling density, network architecture, and optimization algorithm. While promising, further investigation is needed to verify the method's robustness for more complicated problems and to ensure consistent convergence. Nonetheless, the simplicity and adaptability of this neural network-based approach position it as a compelling alternative to specialized partial differential equation solvers.
Related papers
- Verification of Geometric Robustness of Neural Networks via Piecewise Linear Approximation and Lipschitz Optimisation [57.10353686244835]
We address the problem of verifying neural networks against geometric transformations of the input image, including rotation, scaling, shearing, and translation.
The proposed method computes provably sound piecewise linear constraints for the pixel values by using sampling and linear approximations in combination with branch-and-bound Lipschitz.
We show that our proposed implementation resolves up to 32% more verification cases than present approaches.
arXiv Detail & Related papers (2024-08-23T15:02:09Z) - WANCO: Weak Adversarial Networks for Constrained Optimization problems [5.257895611010853]
We first transform minimax problems into minimax problems using the augmented Lagrangian method.
We then use two (or several) deep neural networks to represent the primal and dual variables respectively.
The parameters in the neural networks are then trained by an adversarial process.
arXiv Detail & Related papers (2024-07-04T05:37:48Z) - Improving Generalization of Deep Neural Networks by Optimum Shifting [33.092571599896814]
We propose a novel method called emphoptimum shifting, which changes the parameters of a neural network from a sharp minimum to a flatter one.
Our method is based on the observation that when the input and output of a neural network are fixed, the matrix multiplications within the network can be treated as systems of under-determined linear equations.
arXiv Detail & Related papers (2024-05-23T02:31:55Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Solving the Dirichlet problem for the Monge-Amp\`ere equation using
neural networks [0.0]
We show that an ansatz using deep input convex neural networks can be used to find the convex unique solution.
As part of our analysis we study the effect of singularities, discontinuities and noise in the source function.
We investigate the convergence numerically and present error estimates based on a stability result.
arXiv Detail & Related papers (2021-10-07T10:00:05Z) - De-homogenization using Convolutional Neural Networks [1.0323063834827415]
This paper presents a deep learning-based de-homogenization method for structural compliance minimization.
For an appropriate choice of parameters, the de-homogenized designs perform within $7-25%$ of the homogenization-based solution.
arXiv Detail & Related papers (2021-05-10T09:50:06Z) - Efficient Methods for Structured Nonconvex-Nonconcave Min-Max
Optimization [98.0595480384208]
We propose a generalization extraient spaces which converges to a stationary point.
The algorithm applies not only to general $p$-normed spaces, but also to general $p$-dimensional vector spaces.
arXiv Detail & Related papers (2020-10-31T21:35:42Z) - Neural Control Variates [71.42768823631918]
We show that a set of neural networks can face the challenge of finding a good approximation of the integrand.
We derive a theoretically optimal, variance-minimizing loss function, and propose an alternative, composite loss for stable online training in practice.
Specifically, we show that the learned light-field approximation is of sufficient quality for high-order bounces, allowing us to omit the error correction and thereby dramatically reduce the noise at the cost of negligible visible bias.
arXiv Detail & Related papers (2020-06-02T11:17:55Z) - Parallelization Techniques for Verifying Neural Networks [52.917845265248744]
We introduce an algorithm based on the verification problem in an iterative manner and explore two partitioning strategies.
We also introduce a highly parallelizable pre-processing algorithm that uses the neuron activation phases to simplify the neural network verification problems.
arXiv Detail & Related papers (2020-04-17T20:21:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.