論文の概要: Detection of Emerging Infectious Diseases in Lung CT based on Spatial Anomaly Patterns
- arxiv url: http://arxiv.org/abs/2410.19535v1
- Date: Fri, 25 Oct 2024 13:02:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-28 13:35:50.252298
- Title: Detection of Emerging Infectious Diseases in Lung CT based on Spatial Anomaly Patterns
- Title(参考訳): 空間異常パターンに基づく肺CTにおける新興感染症の検出
- Authors: Branko Mitic, Philipp Seeböck, Jennifer Straub, Helmut Prosch, Georg Langs,
- Abstract要約: 局所的な異常は関連しているが、しばしば新しい病気は、新しい空間分布に慣れ親しんだ病気パターンを伴っている。
本稿では,病変の空間分布の異なるパターンを示す新しい疾患表現型の出現を検出するための新しいアプローチを提案する。
- 参考スコア(独自算出の注目度): 1.7681509210293134
- License:
- Abstract: Fast detection of emerging diseases is important for containing their spread and treating patients effectively. Local anomalies are relevant, but often novel diseases involve familiar disease patterns in new spatial distributions. Therefore, established local anomaly detection approaches may fail to identify them as new. Here, we present a novel approach to detect the emergence of new disease phenotypes exhibiting distinct patterns of the spatial distribution of lesions. We first identify anomalies in lung CT data, and then compare their distribution in a continually acquired new patient cohorts with historic patient population observed over a long prior period. We evaluate how accumulated evidence collected in the stream of patients is able to detect the onset of an emerging disease. In a gram-matrix based representation derived from the intermediate layers of a three-dimensional convolutional neural network, newly emerging clusters indicate emerging diseases.
- Abstract(参考訳): 新興疾患の迅速検出は、患者を効果的に包含し治療するために重要である。
局所的な異常は関連しているが、しばしば新しい病気は、新しい空間分布に慣れ親しんだ病気パターンを伴っている。
したがって、確立された局所異常検出アプローチは、それらを新しいものと識別できない可能性がある。
本稿では,病変の空間分布の異なるパターンを示す新しい疾患表現型の出現を検出するための新しいアプローチを提案する。
我々はまず肺CTデータ中の異常を同定し,その後長期にわたって観察された歴史的患者集団と連続的に獲得された新しい患者コホートにおける分布を比較した。
患者ストリームに蓄積されたエビデンスがどのようにして発生した疾患の発症を検出するかを評価する。
三次元畳み込みニューラルネットワークの中間層から導かれるグラム行列に基づく表現では、新たに出現するクラスターは、新興疾患を示す。
関連論文リスト
- Projection Regret: Reducing Background Bias for Novelty Detection via
Diffusion Models [72.07462371883501]
本研究では,非意味情報のバイアスを緩和する効率的な新規性検出手法であるemphProjection Regret(PR)を提案する。
PRは、テスト画像とその拡散ベースの投影の間の知覚距離を計算し、異常を検出する。
拡張実験により、PRは生成モデルに基づく新規性検出手法の先行技術よりも有意なマージンで優れていることが示された。
論文 参考訳(メタデータ) (2023-12-05T09:44:47Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
本研究は,画像のマスキング領域にペンキを塗布することにより,汎用的な映像時間PAを生成する手法を提案する。
さらに,OCC設定下での現実世界の異常を検出するための単純な統合フレームワークを提案する。
提案手法は,OCC設定下での既存のPAs生成および再構築手法と同等に動作する。
論文 参考訳(メタデータ) (2023-11-27T13:14:06Z) - CheX-Nomaly: Segmenting Lung Abnormalities from Chest Radiographs using
Machine Learning [0.0]
本稿では,二元化ローカライズU-netモデルであるCheX-nomalyを提案する。
対照的な学習手法を取り入れることで,異常局所化モデルの一般化性を大幅に向上できることを示す。
また,バウンディングボックスセグメンテーションにおけるU-nets性能を向上させるために,新たな損失手法を提案する。
論文 参考訳(メタデータ) (2023-11-03T08:27:57Z) - Reversing the Abnormal: Pseudo-Healthy Generative Networks for Anomaly
Detection [8.737589725372398]
PHANES(Pseudo Healthy Generative Network for Anomaly)と呼ばれる新しい教師なしアプローチを導入する。
本手法は, 異常を回復し, 健康な組織を保存し, 異常領域を偽の健康再建に置き換える機能を有する。
我々は、T1w脳MRIデータセットの脳梗塞検出におけるPHANESの有効性を実証し、最先端(SOTA)法よりも大幅に改善したことを示す。
論文 参考訳(メタデータ) (2023-03-15T08:54:20Z) - T-Phenotype: Discovering Phenotypes of Predictive Temporal Patterns in
Disease Progression [82.85825388788567]
我々は、ラベル付き時系列データから予測時相パターンの表現型を発見するために、新しい時間的クラスタリング手法T-Phenotypeを開発した。
T-フェノタイプは, 評価ベースラインのすべてに対して, 最良の表現型発見性能を示す。
論文 参考訳(メタデータ) (2023-02-24T13:30:35Z) - Open-Set Recognition of Breast Cancer Treatments [91.3247063132127]
オープンセット認識は、テストサンプルをトレーニングや"未知"から既知のクラスの1つに分類することで、分類タスクを一般化する
乳がん患者データに対して,画像データセットの最先端結果を実現するガウス混合変分オートエンコーダモデルを適用した。
より正確でロバストな分類結果が得られ,F1の平均値が24.5%上昇したばかりでなく,臨床環境への展開性の観点からも,オープンセット認識の再検討を行った。
論文 参考訳(メタデータ) (2022-01-09T04:35:55Z) - Correlation-based Discovery of Disease Patterns for Syndromic
Surveillance [0.0]
シナドロミック監視は 早期の症状の 検出を目的としてる
早期症状は通常多くの疾患で共有され、特定の疾患は感染の初期段階にいくつかの臨床像を持つことがある。
歴史的データからそのようなパターンを発見するための,新しい,データ駆動型アプローチを提案する。
論文 参考訳(メタデータ) (2021-10-18T11:50:26Z) - CheXseen: Unseen Disease Detection for Deep Learning Interpretation of
Chest X-rays [6.3556514837221725]
学習中にラベルが付かない疾患の存在下でのディープラーニングモデルの性能を体系的に評価する。
まず,あるサブセット(特定の疾患)で訓練されたディープラーニングモデルが,より大きな疾患群のいずれかの存在を検知できるかどうかを評価する。
第2に,病原体外疾患(未発見疾患)と共存する場合に見いだされた病原体に訓練されたモデルが見いだされた病原体を検出することができるかを評価する。
第3に, モデルで学習した特徴表現が, 未発見の疾患の小さな分類群から未発見の疾患の存在を検出するのに有用かどうかを評価する。
論文 参考訳(メタデータ) (2021-03-08T08:13:21Z) - Multimodal Gait Recognition for Neurodegenerative Diseases [38.06704951209703]
3つの神経変性疾患の歩容差を学習するための新しいハイブリッドモデルを提案する。
新しい相関メモリニューラルネットワークアーキテクチャは、時間的特徴を抽出するために設計されている。
いくつかの最先端技術と比較して,提案手法はより正確な分類結果を示す。
論文 参考訳(メタデータ) (2021-01-07T10:17:11Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Viral Pneumonia Screening on Chest X-ray Images Using Confidence-Aware
Anomaly Detection [86.81773672627406]
短期間のウイルス性肺炎の集団は、SARS、MERS、最近のCOVID-19のような流行やパンデミックのハービンガーである可能性がある。
胸部X線によるウイルス性肺炎の迅速かつ正確な検出は,大規模スクリーニングや流行予防に有用である。
ウイルス性肺炎はしばしば多彩な原因を持ち、X線画像に顕著な視覚的外観を示す。
論文 参考訳(メタデータ) (2020-03-27T11:32:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。