How Critical is Site-Specific RAN Optimization? 5G Open-RAN Uplink Air Interface Performance Test and Optimization from Macro-Cell CIR Data
- URL: http://arxiv.org/abs/2410.19565v1
- Date: Fri, 25 Oct 2024 13:57:48 GMT
- Title: How Critical is Site-Specific RAN Optimization? 5G Open-RAN Uplink Air Interface Performance Test and Optimization from Macro-Cell CIR Data
- Authors: Johnathan Corgan, Nitin Nair, Rajib Bhattacharjea, Wan Liu, Serhat Tadik, Tom Tsou, Timothy J. O'Shea,
- Abstract summary: We consider the importance of channel measurement data from specific sites and its impact on air interface optimization and test.
We leverage our OmniPHY-5G neural receiver for NR PUSCH uplink simulation, with a training procedure that uses statistical TDL channel models for pre-training.
The proposed fine-tuning method achieves a 10% block error rate (BLER) at a 1.85 dB lower signal-to-noise ratio (SNR) compared to pre-training.
- Score: 0.6753334733130354
- License:
- Abstract: In this paper, we consider the importance of channel measurement data from specific sites and its impact on air interface optimization and test. Currently, a range of statistical channel models including 3GPP 38.901 tapped delay line (TDL), clustered delay line (CDL), urban microcells (UMi) and urban macrocells (UMa) type channels are widely used for air interface performance testing and simulation. However, there remains a gap in the realism of these models for air interface testing and optimization when compared with real world measurement based channels. To address this gap, we compare the performance impacts of training neural receivers with 1) statistical 3GPP TDL models, and 2) measured macro-cell channel impulse response (CIR) data. We leverage our OmniPHY-5G neural receiver for NR PUSCH uplink simulation, with a training procedure that uses statistical TDL channel models for pre-training, and fine-tuning based on measured site specific MIMO CIR data. The proposed fine-tuning method achieves a 10% block error rate (BLER) at a 1.85 dB lower signal-to-noise ratio (SNR) compared to pre-training only on simulated TDL channels, illustrating a rough magnitude of the gap that can be closed by site-specific training, and gives the first answer to the question "how much can fine-tuning the RAN for site-specific channels help?"
Related papers
- Calibrating Wireless Ray Tracing for Digital Twinning using Local Phase Error Estimates [40.04476706955071]
ray tracing (RT) is widely seen as an enabling technology for DTs of the radio access network (RAN) segment of next-generation wireless systems.
The effectiveness of RT hinges on the adaptation of the electromagnetic properties assumed by the RT to actual channel conditions.
This paper proposes a novel channel response-based scheme that estimates and compensates for the phase errors in the channel responses.
arXiv Detail & Related papers (2023-12-19T22:01:59Z) - Learning Radio Environments by Differentiable Ray Tracing [56.40113938833999]
We introduce a novel gradient-based calibration method, complemented by differentiable parametrizations of material properties, scattering and antenna patterns.
We have validated our method using both synthetic data and real-world indoor channel measurements, employing a distributed multiple-input multiple-output (MIMO) channel sounder.
arXiv Detail & Related papers (2023-11-30T13:50:21Z) - Over-the-Air Federated Learning and Optimization [52.5188988624998]
We focus on Federated learning (FL) via edge-the-air computation (AirComp)
We describe the convergence of AirComp-based FedAvg (AirFedAvg) algorithms under both convex and non- convex settings.
For different types of local updates that can be transmitted by edge devices (i.e., model, gradient, model difference), we reveal that transmitting in AirFedAvg may cause an aggregation error.
In addition, we consider more practical signal processing schemes to improve the communication efficiency and extend the convergence analysis to different forms of model aggregation error caused by these signal processing schemes.
arXiv Detail & Related papers (2023-10-16T05:49:28Z) - Consistency Trajectory Models: Learning Probability Flow ODE Trajectory of Diffusion [56.38386580040991]
Consistency Trajectory Model (CTM) is a generalization of Consistency Models (CM)
CTM enables the efficient combination of adversarial training and denoising score matching loss to enhance performance.
Unlike CM, CTM's access to the score function can streamline the adoption of established controllable/conditional generation methods.
arXiv Detail & Related papers (2023-10-01T05:07:17Z) - Over-the-Air Design of GAN Training for mmWave MIMO Channel Estimation [35.62977046569772]
We develop an unsupervised over-the-air (OTA) algorithm that utilizes noisy received pilot measurements to train a deep generative model.
We then formulate channel estimation from a limited number of pilot measurements as an inverse problem.
Our proposed framework has the potential to be trained online using real noisy pilot measurements.
arXiv Detail & Related papers (2022-05-25T02:26:34Z) - Deep Learning-Based Synchronization for Uplink NB-IoT [72.86843435313048]
We propose a neural network (NN)-based algorithm for device detection and time of arrival (ToA) estimation for the narrowband physical random-access channel (NPRACH) of narrowband internet of things (NB-IoT)
The introduced NN architecture leverages residual convolutional networks as well as knowledge of the preamble structure of the 5G New Radio (5G NR) specifications.
arXiv Detail & Related papers (2022-05-22T12:16:43Z) - Over-the-Air Federated Learning from Heterogeneous Data [107.05618009955094]
Federated learning (FL) is a framework for distributed learning of centralized models.
We develop a Convergent OTA FL (COTAF) algorithm which enhances the common local gradient descent (SGD) FL algorithm.
We numerically show that the precoding induced by COTAF notably improves the convergence rate and the accuracy of models trained via OTA FL.
arXiv Detail & Related papers (2020-09-27T08:28:25Z) - Massive MIMO Channel Prediction: Kalman Filtering vs. Machine Learning [18.939010023327498]
This paper focuses on channel prediction techniques for massive multiple-input multiple-output (MIMO) systems.
We develop and compare a vector Kalman filter (VKF)-based channel predictor and a machine learning (ML)-based channel predictor.
arXiv Detail & Related papers (2020-09-21T15:47:34Z) - mpNet: variable depth unfolded neural network for massive MIMO channel
estimation [0.0]
Massive multiple-input multiple-output (MIMO) communication systems have a huge potential both in terms of data rate and energy efficiency.
Using a physical model allows to ease the problem by injecting a priori information based on the physics of propagation.
However, such a model rests on simplifying assumptions and requires to know precisely the configuration of the system, which is unrealistic in practice.
arXiv Detail & Related papers (2020-08-07T12:23:44Z) - Millimeter Wave Communications with an Intelligent Reflector:
Performance Optimization and Distributional Reinforcement Learning [119.97450366894718]
A novel framework is proposed to optimize the downlink multi-user communication of a millimeter wave base station.
A channel estimation approach is developed to measure the channel state information (CSI) in real-time.
A distributional reinforcement learning (DRL) approach is proposed to learn the optimal IR reflection and maximize the expectation of downlink capacity.
arXiv Detail & Related papers (2020-02-24T22:18:54Z) - Machine Learning Based Channel Modeling for Vehicular Visible Light
Communication [7.716156977428555]
Current Optical Wireless Communication (OWC) propagation channel characterization plays a key role on the design and performance analysis of Vehicular Visible Light Communication (VVLC) systems.
Current OWC channel models based on deterministic synthesis and mobility induced methods, fail to address ambient light, optical turbulence and road reflection effects on channel characterization.
Alternative machine learning schemes, considering ambient light, optical turbulence, road reflection effects in addition to intervehicular distance and geometry, are proposed to obtain accurate VVLC channel loss and channel frequency response (CFR)
arXiv Detail & Related papers (2020-02-03T12:38:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.