AGENT-CQ: Automatic Generation and Evaluation of Clarifying Questions for Conversational Search with LLMs
- URL: http://arxiv.org/abs/2410.19692v1
- Date: Fri, 25 Oct 2024 17:06:27 GMT
- Title: AGENT-CQ: Automatic Generation and Evaluation of Clarifying Questions for Conversational Search with LLMs
- Authors: Clemencia Siro, Yifei Yuan, Mohammad Aliannejadi, Maarten de Rijke,
- Abstract summary: AGENT-CQ consists of two stages: a generation stage and an evaluation stage.
CrowdLLM simulates human crowdsourcing judgments to assess generated questions and answers.
Experiments on the ClariQ dataset demonstrate CrowdLLM's effectiveness in evaluating question and answer quality.
- Score: 53.6200736559742
- License:
- Abstract: Generating diverse and effective clarifying questions is crucial for improving query understanding and retrieval performance in open-domain conversational search (CS) systems. We propose AGENT-CQ (Automatic GENeration, and evaluaTion of Clarifying Questions), an end-to-end LLM-based framework addressing the challenges of scalability and adaptability faced by existing methods that rely on manual curation or template-based approaches. AGENT-CQ consists of two stages: a generation stage employing LLM prompting strategies to generate clarifying questions, and an evaluation stage (CrowdLLM) that simulates human crowdsourcing judgments using multiple LLM instances to assess generated questions and answers based on comprehensive quality metrics. Extensive experiments on the ClariQ dataset demonstrate CrowdLLM's effectiveness in evaluating question and answer quality. Human evaluation and CrowdLLM show that the AGENT-CQ - generation stage, consistently outperforms baselines in various aspects of question and answer quality. In retrieval-based evaluation, LLM-generated questions significantly enhance retrieval effectiveness for both BM25 and cross-encoder models compared to human-generated questions.
Related papers
- Beyond Binary: Towards Fine-Grained LLM-Generated Text Detection via Role Recognition and Involvement Measurement [51.601916604301685]
Large language models (LLMs) generate content that can undermine trust in online discourse.
Current methods often focus on binary classification, failing to address the complexities of real-world scenarios like human-AI collaboration.
To move beyond binary classification and address these challenges, we propose a new paradigm for detecting LLM-generated content.
arXiv Detail & Related papers (2024-10-18T08:14:10Z) - The Future of Learning in the Age of Generative AI: Automated Question Generation and Assessment with Large Language Models [0.0]
Large language models (LLMs) and generative AI have revolutionized natural language processing (NLP)
This chapter explores the transformative potential of LLMs in automated question generation and answer assessment.
arXiv Detail & Related papers (2024-10-12T15:54:53Z) - AHP-Powered LLM Reasoning for Multi-Criteria Evaluation of Open-Ended Responses [26.850344968677582]
We propose a method that leverages large language models to evaluate answers to open-ended questions.
We conducted experiments on four datasets using both ChatGPT-3.5-turbo and GPT-4.
Our results indicate that our approach more closely aligns with human judgment compared to the four baselines.
arXiv Detail & Related papers (2024-10-02T05:22:07Z) - LINKAGE: Listwise Ranking among Varied-Quality References for Non-Factoid QA Evaluation via LLMs [61.57691505683534]
Non-Factoid (NF) Question Answering (QA) is challenging to evaluate due to diverse potential answers and no objective criterion.
Large Language Models (LLMs) have been resorted to for NFQA evaluation due to their compelling performance on various NLP tasks.
We propose a novel listwise NFQA evaluation approach, that utilizes LLMs to rank candidate answers in a list of reference answers sorted by descending quality.
arXiv Detail & Related papers (2024-09-23T06:42:21Z) - Reference-Guided Verdict: LLMs-as-Judges in Automatic Evaluation of Free-Form Text [12.879551933541345]
Large Language Models (LLMs) are capable of generating human-like conversations.
Conventional metrics like BLEU and ROUGE are inadequate for capturing the subtle semantics and contextual richness of such generative outputs.
We propose a reference-guided verdict method that automates the evaluation process by leveraging multiple LLMs-as-judges.
arXiv Detail & Related papers (2024-08-17T16:01:45Z) - LOVA3: Learning to Visual Question Answering, Asking and Assessment [61.51687164769517]
Question answering, asking, and assessment are three innate human traits crucial for understanding the world and acquiring knowledge.
Current Multimodal Large Language Models (MLLMs) primarily focus on question answering, often neglecting the full potential of questioning and assessment skills.
We introduce LOVA3, an innovative framework named "Learning tO Visual question Answering, Asking and Assessment"
arXiv Detail & Related papers (2024-05-23T18:21:59Z) - Let LLMs Take on the Latest Challenges! A Chinese Dynamic Question
Answering Benchmark [69.3415799675046]
We introduce CDQA, a Chinese Dynamic QA benchmark containing question-answer pairs related to the latest news on the Chinese Internet.
We obtain high-quality data through a pipeline that combines humans and models.
We have also evaluated and analyzed mainstream and advanced Chinese LLMs on CDQA.
arXiv Detail & Related papers (2024-02-29T15:22:13Z) - Let the LLMs Talk: Simulating Human-to-Human Conversational QA via
Zero-Shot LLM-to-LLM Interactions [19.365615476223635]
Conversational question-answering systems aim to create interactive search systems that retrieve information by interacting with users.
Existing work uses human annotators to play the roles of the questioner (student) and the answerer (teacher)
We propose a simulation framework that employs zero-shot learner LLMs for simulating teacher-student interactions.
arXiv Detail & Related papers (2023-12-05T17:38:02Z) - Towards leveraging LLMs for Conditional QA [1.9649272351760063]
This study delves into the capabilities and limitations of Large Language Models (LLMs) in the challenging domain of conditional question-answering.
Our findings reveal that fine-tuned LLMs can surpass the state-of-the-art (SOTA) performance in some cases, even without fully encoding all input context.
These models encounter challenges in extractive question answering, where they lag behind the SOTA by over 10 points, and in mitigating the risk of injecting false information.
arXiv Detail & Related papers (2023-12-02T14:02:52Z) - Self-prompted Chain-of-Thought on Large Language Models for Open-domain
Multi-hop Reasoning [70.74928578278957]
In open-domain question-answering (ODQA), most existing questions require single-hop reasoning on commonsense.
Large language models (LLMs) have found significant utility in facilitating ODQA without external corpus.
We propose Self-prompted Chain-of-Thought (SP-CoT), an automated framework to mass-produce high quality CoTs.
arXiv Detail & Related papers (2023-10-20T14:51:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.