IPPON: Common Sense Guided Informative Path Planning for Object Goal Navigation
- URL: http://arxiv.org/abs/2410.19697v1
- Date: Fri, 25 Oct 2024 17:11:33 GMT
- Title: IPPON: Common Sense Guided Informative Path Planning for Object Goal Navigation
- Authors: Kaixian Qu, Jie Tan, Tingnan Zhang, Fei Xia, Cesar Cadena, Marco Hutter,
- Abstract summary: This paper introduces a novel informative path planning and 3D object probability mapping approach.
The mapping module computes the probability of the object of interest through semantic segmentation and a Bayes filter.
Although our planner follows a zero-shot approach, it achieves state-of-the-art performance as measured by the Success weighted by Path Length (SPL) and Soft SPL in the Habitat ObjectNav Challenge 2023.
- Score: 33.979481250363584
- License:
- Abstract: Navigating efficiently to an object in an unexplored environment is a critical skill for general-purpose intelligent robots. Recent approaches to this object goal navigation problem have embraced a modular strategy, integrating classical exploration algorithms-notably frontier exploration-with a learned semantic mapping/exploration module. This paper introduces a novel informative path planning and 3D object probability mapping approach. The mapping module computes the probability of the object of interest through semantic segmentation and a Bayes filter. Additionally, it stores probabilities for common objects, which semantically guides the exploration based on common sense priors from a large language model. The planner terminates when the current viewpoint captures enough voxels identified with high confidence as the object of interest. Although our planner follows a zero-shot approach, it achieves state-of-the-art performance as measured by the Success weighted by Path Length (SPL) and Soft SPL in the Habitat ObjectNav Challenge 2023, outperforming other works by more than 20%. Furthermore, we validate its effectiveness on real robots. Project webpage: https://ippon-paper.github.io/
Related papers
- VoroNav: Voronoi-based Zero-shot Object Navigation with Large Language
Model [28.79971953667143]
VoroNav is a semantic exploration framework to extract exploratory paths and planning nodes from a semantic map constructed in real time.
By harnessing topological and semantic information, VoroNav designs text-based descriptions of paths and images that are readily interpretable by a large language model.
arXiv Detail & Related papers (2024-01-05T08:05:07Z) - Probable Object Location (POLo) Score Estimation for Efficient Object
Goal Navigation [15.623723522165731]
We introduce a novel framework centered around the Probable Object Location (POLo) score.
We further enhance the framework's practicality by introducing POLoNet, a neural network trained to approximate the computationally intensive POLo score.
Our experiments, involving the first phase of the OVMM 2023 challenge, demonstrate that an agent equipped with POLoNet significantly outperforms a range of baseline methods.
arXiv Detail & Related papers (2023-11-14T08:45:32Z) - NoMaD: Goal Masked Diffusion Policies for Navigation and Exploration [57.15811390835294]
This paper describes how we can train a single unified diffusion policy to handle both goal-directed navigation and goal-agnostic exploration.
We show that this unified policy results in better overall performance when navigating to visually indicated goals in novel environments.
Our experiments, conducted on a real-world mobile robot platform, show effective navigation in unseen environments in comparison with five alternative methods.
arXiv Detail & Related papers (2023-10-11T21:07:14Z) - Object Goal Navigation with Recursive Implicit Maps [92.6347010295396]
We propose an implicit spatial map for object goal navigation.
Our method significantly outperforms the state of the art on the challenging MP3D dataset.
We deploy our model on a real robot and achieve encouraging object goal navigation results in real scenes.
arXiv Detail & Related papers (2023-08-10T14:21:33Z) - ViKiNG: Vision-Based Kilometer-Scale Navigation with Geographic Hints [94.60414567852536]
Long-range navigation requires both planning and reasoning about local traversability.
We propose a learning-based approach that integrates learning and planning.
ViKiNG can leverage its image-based learned controller and goal-directed to navigate to goals up to 3 kilometers away.
arXiv Detail & Related papers (2022-02-23T02:14:23Z) - Navigating to Objects in Unseen Environments by Distance Prediction [16.023495311387478]
We propose an object goal navigation framework, which could directly perform path planning based on an estimated distance map.
Specifically, our model takes a birds-eye-view semantic map as input, and estimates the distance from the map cells to the target object.
With the estimated distance map, the agent could explore the environment and navigate to the target objects based on either human-designed or learned navigation policy.
arXiv Detail & Related papers (2022-02-08T09:22:50Z) - PONI: Potential Functions for ObjectGoal Navigation with
Interaction-free Learning [125.22462763376993]
We propose Potential functions for ObjectGoal Navigation with Interaction-free learning (PONI)
PONI disentangles the skills of where to look?' for an object and how to navigate to (x, y)?'
arXiv Detail & Related papers (2022-01-25T01:07:32Z) - SGoLAM: Simultaneous Goal Localization and Mapping for Multi-Object Goal
Navigation [5.447924312563365]
We present SGoLAM, a simple and efficient algorithm for Multi-Object Goal navigation.
Given an agent equipped with an RGB-D camera and a GPS/ sensor, our objective is to have the agent navigate to a sequence of target objects in realistic 3D environments.
SGoLAM is ranked 2nd in the CVPR 2021 MultiON (Multi-Object Goal Navigation) challenge.
arXiv Detail & Related papers (2021-10-14T06:15:14Z) - SOON: Scenario Oriented Object Navigation with Graph-based Exploration [102.74649829684617]
The ability to navigate like a human towards a language-guided target from anywhere in a 3D embodied environment is one of the 'holy grail' goals of intelligent robots.
Most visual navigation benchmarks focus on navigating toward a target from a fixed starting point, guided by an elaborate set of instructions that depicts step-by-step.
This approach deviates from real-world problems in which human-only describes what the object and its surrounding look like and asks the robot to start navigation from anywhere.
arXiv Detail & Related papers (2021-03-31T15:01:04Z) - Object Goal Navigation using Goal-Oriented Semantic Exploration [98.14078233526476]
This work studies the problem of object goal navigation which involves navigating to an instance of the given object category in unseen environments.
We propose a modular system called, Goal-Oriented Semantic Exploration' which builds an episodic semantic map and uses it to explore the environment efficiently.
arXiv Detail & Related papers (2020-07-01T17:52:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.