Super Gradient Descent: Global Optimization requires Global Gradient
- URL: http://arxiv.org/abs/2410.19706v2
- Date: Tue, 29 Oct 2024 21:23:29 GMT
- Title: Super Gradient Descent: Global Optimization requires Global Gradient
- Authors: Seifeddine Achour,
- Abstract summary: This article introduces a novel optimization method that guarantees convergence to the global minimum for any k-Lipschitz function defined on a closed interval.
Our approach addresses the limitations of traditional optimization algorithms, which often get trapped in local minima.
- Score: 0.0
- License:
- Abstract: Global minimization is a fundamental challenge in optimization, especially in machine learning, where finding the global minimum of a function directly impacts model performance and convergence. This article introduces a novel optimization method that we called Super Gradient Descent, designed specifically for one-dimensional functions, guaranteeing convergence to the global minimum for any k-Lipschitz function defined on a closed interval [a, b]. Our approach addresses the limitations of traditional optimization algorithms, which often get trapped in local minima. In particular, we introduce the concept of global gradient which offers a robust solution for precise and well-guided global optimization. By focusing on the global minimization problem, this work bridges a critical gap in optimization theory, offering new insights and practical advancements in different optimization problems in particular Machine Learning problems like line search.
Related papers
- Localized Zeroth-Order Prompt Optimization [54.964765668688806]
We propose a novel algorithm, namely localized zeroth-order prompt optimization (ZOPO)
ZOPO incorporates a Neural Tangent Kernel-based derived Gaussian process into standard zeroth-order optimization for an efficient search of well-performing local optima in prompt optimization.
Remarkably, ZOPO outperforms existing baselines in terms of both the optimization performance and the query efficiency.
arXiv Detail & Related papers (2024-03-05T14:18:15Z) - ProGO: Probabilistic Global Optimizer [9.772380490791635]
In this paper we develop an algorithm that converges to the global optima under some mild conditions.
We show that the proposed algorithm outperforms, by order of magnitude, many existing state-of-the-art methods.
arXiv Detail & Related papers (2023-10-04T22:23:40Z) - Restricted Global Optimization for QAOA [0.0]
We show that local optimization methods are inherently inadequate within the complex cost landscape of QAOA.
Instead, global optimization techniques greatly improve QAOA's performance across diverse problem instances.
arXiv Detail & Related papers (2023-09-21T15:47:07Z) - Dynamic Regularized Sharpness Aware Minimization in Federated Learning: Approaching Global Consistency and Smooth Landscape [59.841889495864386]
In federated learning (FL), a cluster of local clients are chaired under the coordination of a global server.
Clients are prone to overfit into their own optima, which extremely deviates from the global objective.
ttfamily FedSMOO adopts a dynamic regularizer to guarantee the local optima towards the global objective.
Our theoretical analysis indicates that ttfamily FedSMOO achieves fast $mathcalO (1/T)$ convergence rate with low bound generalization.
arXiv Detail & Related papers (2023-05-19T10:47:44Z) - AGGLIO: Global Optimization for Locally Convex Functions [5.221860952360943]
This paper presents AGG (Accelerated Optimization Generalized LInear-model) a stage-wise, global technique that offers provable convergence problems.
AGG can be readily implemented using point as A-batch SGD updates and offers provable convergence as well as convergent experiments.
arXiv Detail & Related papers (2021-11-06T18:15:56Z) - Fighting the curse of dimensionality: A machine learning approach to
finding global optima [77.34726150561087]
This paper shows how to find global optima in structural optimization problems.
By exploiting certain cost functions we either obtain the global at best or obtain superior results at worst when compared to established optimization procedures.
arXiv Detail & Related papers (2021-10-28T09:50:29Z) - Why Do Local Methods Solve Nonconvex Problems? [54.284687261929115]
Non-used optimization is ubiquitous in modern machine learning.
We rigorously formalize it for instances of machine learning problems.
We hypothesize a unified explanation for this phenomenon.
arXiv Detail & Related papers (2021-03-24T19:34:11Z) - Recent Theoretical Advances in Non-Convex Optimization [56.88981258425256]
Motivated by recent increased interest in analysis of optimization algorithms for non- optimization in deep networks and other problems in data, we give an overview of recent results of theoretical optimization algorithms for non- optimization.
arXiv Detail & Related papers (2020-12-11T08:28:51Z) - An adaptive stochastic gradient-free approach for high-dimensional
blackbox optimization [0.0]
We propose an adaptive gradient-free (ASGF) approach for high-dimensional non-smoothing problems.
We illustrate the performance of this method on benchmark global problems and learning tasks.
arXiv Detail & Related papers (2020-06-18T22:47:58Z) - Global Optimization of Gaussian processes [52.77024349608834]
We propose a reduced-space formulation with trained Gaussian processes trained on few data points.
The approach also leads to significantly smaller and computationally cheaper sub solver for lower bounding.
In total, we reduce time convergence by orders of orders of the proposed method.
arXiv Detail & Related papers (2020-05-21T20:59:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.