Evolving Neural Networks Reveal Emergent Collective Behavior from Minimal Agent Interactions
- URL: http://arxiv.org/abs/2410.19718v1
- Date: Fri, 25 Oct 2024 17:43:00 GMT
- Title: Evolving Neural Networks Reveal Emergent Collective Behavior from Minimal Agent Interactions
- Authors: Guilherme S. Y. Giardini, John F. Hardy II, Carlo R. da Cunha,
- Abstract summary: We investigate how neural networks evolve to control agents' behavior in a dynamic environment.
Simpler behaviors, such as lane formation and laminar flow, are characterized by more linear network operations.
Specific environmental parameters, such as moderate noise, broader field of view, and lower agent density, promote the evolution of non-linear networks.
- Score: 0.0
- License:
- Abstract: Understanding the mechanisms behind emergent behaviors in multi-agent systems is critical for advancing fields such as swarm robotics and artificial intelligence. In this study, we investigate how neural networks evolve to control agents' behavior in a dynamic environment, focusing on the relationship between the network's complexity and collective behavior patterns. By performing quantitative and qualitative analyses, we demonstrate that the degree of network non-linearity correlates with the complexity of emergent behaviors. Simpler behaviors, such as lane formation and laminar flow, are characterized by more linear network operations, while complex behaviors like swarming and flocking show highly non-linear neural processing. Moreover, specific environmental parameters, such as moderate noise, broader field of view, and lower agent density, promote the evolution of non-linear networks that drive richer, more intricate collective behaviors. These results highlight the importance of tuning evolutionary conditions to induce desired behaviors in multi-agent systems, offering new pathways for optimizing coordination in autonomous swarms. Our findings contribute to a deeper understanding of how neural mechanisms influence collective dynamics, with implications for the design of intelligent, self-organizing systems.
Related papers
- Artificial Kuramoto Oscillatory Neurons [65.16453738828672]
We introduce Artificial Kuramotoy Neurons (AKOrN) as a dynamical alternative to threshold units.
We show that this idea provides performance improvements across a wide spectrum of tasks.
We believe that these empirical results show the importance of our assumptions at the most basic neuronal level of neural representation.
arXiv Detail & Related papers (2024-10-17T17:47:54Z) - Quantifying Emergence in Neural Networks: Insights from Pruning and Training Dynamics [0.0]
Emergence, where complex behaviors develop from the interactions of simpler components within a network, plays a crucial role in enhancing capabilities.
We introduce a quantitative framework to measure emergence during the training process and examine its impact on network performance.
Our hypothesis posits that the degree of emergence, defined by the connectivity between active and inactive nodes, can predict the development of emergent behaviors in the network.
arXiv Detail & Related papers (2024-09-03T03:03:35Z) - Explosive neural networks via higher-order interactions in curved statistical manifolds [43.496401697112695]
We introduce curved neural networks as a class of prototypical models for studying higher-order phenomena.
We show that these curved neural networks implement a self-regulating process that can accelerate memory retrieval.
arXiv Detail & Related papers (2024-08-05T09:10:29Z) - Synergistic pathways of modulation enable robust task packing within neural dynamics [0.0]
We use recurrent network models to probe the distinctions between two forms of contextual modulation of neural dynamics.
We demonstrate distinction between these mechanisms at the level of the neuronal dynamics they induce.
These characterizations indicate complementarity and synergy in how these mechanisms act, potentially over multiple time-scales.
arXiv Detail & Related papers (2024-08-02T15:12:01Z) - Navigating the swarm: Deep neural networks command emergent behaviours [2.7059353835118602]
We show that it is possible to generate coordinated structures in collective behavior with intended global patterns by fine-tuning an inter-agent interaction rule.
Our strategy employs deep neural networks, obeying the laws of dynamics, to find interaction rules that command desired structures.
Our findings pave the way for new applications in robotic swarm operations, active matter organisation, and for the uncovering of obscure interaction rules in biological systems.
arXiv Detail & Related papers (2024-07-16T02:46:11Z) - Behavior-Inspired Neural Networks for Relational Inference [3.7219180084857473]
Recent works learn to categorize relationships between agents based on observations of their physical behavior.
We introduce a level of abstraction between the observable behavior of agents and the latent categories that determine their behavior.
We integrate the physical proximity of agents and their preferences in a nonlinear opinion dynamics model which provides a mechanism to identify mutually exclusive latent categories, predict an agent's evolution in time, and control an agent's physical behavior.
arXiv Detail & Related papers (2024-06-20T21:36:54Z) - Exploring neural oscillations during speech perception via surrogate gradient spiking neural networks [59.38765771221084]
We present a physiologically inspired speech recognition architecture compatible and scalable with deep learning frameworks.
We show end-to-end gradient descent training leads to the emergence of neural oscillations in the central spiking neural network.
Our findings highlight the crucial inhibitory role of feedback mechanisms, such as spike frequency adaptation and recurrent connections, in regulating and synchronising neural activity to improve recognition performance.
arXiv Detail & Related papers (2024-04-22T09:40:07Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Backprop-Free Reinforcement Learning with Active Neural Generative
Coding [84.11376568625353]
We propose a computational framework for learning action-driven generative models without backpropagation of errors (backprop) in dynamic environments.
We develop an intelligent agent that operates even with sparse rewards, drawing inspiration from the cognitive theory of planning as inference.
The robust performance of our agent offers promising evidence that a backprop-free approach for neural inference and learning can drive goal-directed behavior.
arXiv Detail & Related papers (2021-07-10T19:02:27Z) - The distribution of inhibitory neurons in the C. elegans connectome
facilitates self-optimization of coordinated neural activity [78.15296214629433]
The nervous system of the nematode Caenorhabditis elegans exhibits remarkable complexity despite the worm's small size.
A general challenge is to better understand the relationship between neural organization and neural activity at the system level.
We implemented an abstract simulation model of the C. elegans connectome that approximates the neurotransmitter identity of each neuron.
arXiv Detail & Related papers (2020-10-28T23:11:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.