Quantifying Emergence in Neural Networks: Insights from Pruning and Training Dynamics
- URL: http://arxiv.org/abs/2409.01568v1
- Date: Tue, 3 Sep 2024 03:03:35 GMT
- Title: Quantifying Emergence in Neural Networks: Insights from Pruning and Training Dynamics
- Authors: Faisal AlShinaifi, Zeyad Almoaigel, Johnny Jingze Li, Abdulla Kuleib, Gabriel A. Silva,
- Abstract summary: Emergence, where complex behaviors develop from the interactions of simpler components within a network, plays a crucial role in enhancing capabilities.
We introduce a quantitative framework to measure emergence during the training process and examine its impact on network performance.
Our hypothesis posits that the degree of emergence, defined by the connectivity between active and inactive nodes, can predict the development of emergent behaviors in the network.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Emergence, where complex behaviors develop from the interactions of simpler components within a network, plays a crucial role in enhancing neural network capabilities. We introduce a quantitative framework to measure emergence during the training process and examine its impact on network performance, particularly in relation to pruning and training dynamics. Our hypothesis posits that the degree of emergence, defined by the connectivity between active and inactive nodes, can predict the development of emergent behaviors in the network. Through experiments with feedforward and convolutional architectures on benchmark datasets, we demonstrate that higher emergence correlates with improved trainability and performance. We further explore the relationship between network complexity and the loss landscape, suggesting that higher emergence indicates a greater concentration of local minima and a more rugged loss landscape. Pruning, which reduces network complexity by removing redundant nodes and connections, is shown to enhance training efficiency and convergence speed, though it may lead to a reduction in final accuracy. These findings provide new insights into the interplay between emergence, complexity, and performance in neural networks, offering valuable implications for the design and optimization of more efficient architectures.
Related papers
- Evolving Neural Networks Reveal Emergent Collective Behavior from Minimal Agent Interactions [0.0]
We investigate how neural networks evolve to control agents' behavior in a dynamic environment.
Simpler behaviors, such as lane formation and laminar flow, are characterized by more linear network operations.
Specific environmental parameters, such as moderate noise, broader field of view, and lower agent density, promote the evolution of non-linear networks.
arXiv Detail & Related papers (2024-10-25T17:43:00Z) - Towards Efficient Deep Spiking Neural Networks Construction with Spiking Activity based Pruning [17.454100169491497]
We propose a structured pruning approach based on the activity levels of convolutional kernels named Spiking Channel Activity-based (SCA) network pruning framework.
Inspired by synaptic plasticity mechanisms, our method dynamically adjusts the network's structure by pruning and regenerating convolutional kernels during training, enhancing the model's adaptation to the current target task.
arXiv Detail & Related papers (2024-06-03T07:44:37Z) - Exploring the Complexity of Deep Neural Networks through Functional Equivalence [1.3597551064547502]
We present a novel bound on the covering number for deep neural networks, which reveals that the complexity of neural networks can be reduced.
We demonstrate that functional equivalence benefits optimization, as over parameterized networks tend to be easier to train since increasing network width leads to a diminishing volume of the effective parameter space.
arXiv Detail & Related papers (2023-05-19T04:01:27Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
We theoretically characterize the impact of connectivity patterns on the convergence of deep neural networks (DNNs) under gradient descent training.
We show that by a simple filtration on "unpromising" connectivity patterns, we can trim down the number of models to evaluate.
arXiv Detail & Related papers (2022-05-11T17:43:54Z) - Towards Understanding Theoretical Advantages of Complex-Reaction
Networks [77.34726150561087]
We show that a class of functions can be approximated by a complex-reaction network using the number of parameters.
For empirical risk minimization, our theoretical result shows that the critical point set of complex-reaction networks is a proper subset of that of real-valued networks.
arXiv Detail & Related papers (2021-08-15T10:13:49Z) - Mitigating Performance Saturation in Neural Marked Point Processes:
Architectures and Loss Functions [50.674773358075015]
We propose a simple graph-based network structure called GCHP, which utilizes only graph convolutional layers.
We show that GCHP can significantly reduce training time and the likelihood ratio loss with interarrival time probability assumptions can greatly improve the model performance.
arXiv Detail & Related papers (2021-07-07T16:59:14Z) - Activation function impact on Sparse Neural Networks [0.0]
Sparse Evolutionary Training allows for significantly lower computational complexity when compared to fully connected models.
This research provides insights into the relationship between the activation function used and the network performance at various sparsity levels.
arXiv Detail & Related papers (2020-10-12T18:05:04Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
We propose a topological perspective to represent a network into a complete graph for analysis.
By assigning learnable parameters to the edges which reflect the magnitude of connections, the learning process can be performed in a differentiable manner.
This learning process is compatible with existing networks and owns adaptability to larger search spaces and different tasks.
arXiv Detail & Related papers (2020-08-19T04:53:31Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
We propose a novel learning framework for inference and estimation problems of diffusion on networks.
Our framework is derived from the Mori-Zwanzig formalism to obtain an exact evolution of the node infection probabilities.
Our approach is versatile and robust to variations of the underlying diffusion network models.
arXiv Detail & Related papers (2020-06-16T18:45:20Z) - Understanding the Effects of Data Parallelism and Sparsity on Neural
Network Training [126.49572353148262]
We study two factors in neural network training: data parallelism and sparsity.
Despite their promising benefits, understanding of their effects on neural network training remains elusive.
arXiv Detail & Related papers (2020-03-25T10:49:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.