論文の概要: AppBench: Planning of Multiple APIs from Various APPs for Complex User Instruction
- arxiv url: http://arxiv.org/abs/2410.19743v1
- Date: Thu, 10 Oct 2024 04:03:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-03 08:52:33.109143
- Title: AppBench: Planning of Multiple APIs from Various APPs for Complex User Instruction
- Title(参考訳): AppBench: 複雑なユーザインストラクションのためのさまざまなappから複数のAPIを計画する
- Authors: Hongru Wang, Rui Wang, Boyang Xue, Heming Xia, Jingtao Cao, Zeming Liu, Jeff Z. Pan, Kam-Fai Wong,
- Abstract要約: 大きな言語モデル(LLM)は、多用途外部APIと接続することで、現実世界と対話することができる。
textttAppBench は LLM が様々なソースから複数の API を計画・実行できる能力を評価する最初のベンチマークである。
- 参考スコア(独自算出の注目度): 24.67142048995415
- License:
- Abstract: Large Language Models (LLMs) can interact with the real world by connecting with versatile external APIs, resulting in better problem-solving and task automation capabilities. Previous research primarily focuses on APIs with limited arguments from a single source or overlooks the complex dependency relationship between different APIs. However, it is essential to utilize multiple APIs collaboratively from various sources (e.g., different Apps in the iPhone), especially for complex user instructions. In this paper, we introduce \texttt{AppBench}, the first benchmark to evaluate LLMs' ability to plan and execute multiple APIs from various sources in order to complete the user's task. Specifically, we consider two significant challenges in multiple APIs: \textit{1) graph structures:} some APIs can be executed independently while others need to be executed one by one, resulting in graph-like execution order; and \textit{2) permission constraints:} which source is authorized to execute the API call. We have experimental results on 9 distinct LLMs; e.g., GPT-4o achieves only a 2.0\% success rate at the most complex instruction, revealing that the existing state-of-the-art LLMs still cannot perform well in this situation even with the help of in-context learning and finetuning. Our code and data are publicly available at https://github.com/ruleGreen/AppBench.
- Abstract(参考訳): 大きな言語モデル(LLM)は、汎用的な外部APIと接続することで現実世界と対話し、より良い問題解決とタスク自動化機能を実現する。
これまでの研究は主に、単一のソースからの限定的な引数を持つAPIに焦点を当てたり、異なるAPI間の複雑な依存関係関係を見落としている。
しかし、複数のAPIを様々なソース(例えば、iPhoneの異なるアプリ)から協調的に利用することは、特に複雑なユーザーインストラクションに欠かせない。
本稿では,ユーザのタスクを完了させるために,LLMが様々なソースから複数のAPIを計画・実行する能力を評価するための最初のベンチマークである,‘texttt{AppBench}’を紹介する。
具体的には、複数のAPIにおける2つの重要な課題について検討する。 \textit{1 graph structures:} あるAPIは独立して実行できるが、他のAPIは1つずつ実行する必要がある。
GPT-4o は,9つの異なる LLM に対して実験的な結果を得た。例えば,GPT-4o は最も複雑な命令において,2.0 % の成功率しか達成せず,既存の最先端の LLM は,文脈内学習や微調整の助けを借りても,この状況では依然としてうまく機能しないことが明らかとなった。
私たちのコードとデータはhttps://github.com/ruleGreen/AppBench.comで公開されています。
関連論文リスト
- A Systematic Evaluation of Large Code Models in API Suggestion: When, Which, and How [53.65636914757381]
API提案は、現代のソフトウェア開発において重要なタスクである。
大規模コードモデル(LCM)の最近の進歩は、API提案タスクにおいて有望であることを示している。
論文 参考訳(メタデータ) (2024-09-20T03:12:35Z) - NESTFUL: A Benchmark for Evaluating LLMs on Nested Sequences of API Calls [18.831512738668792]
API呼び出しのネストシーケンスに基づいて,大規模言語モデル(LLM)を評価するベンチマークであるNESTFULを提案する。
その結果,ほとんどのモデルではNESTFULのネストしたAPIでは,既存のベンチマークで利用可能なより単純な問題設定では,性能が良くないことがわかった。
論文 参考訳(メタデータ) (2024-09-04T17:53:24Z) - WorldAPIs: The World Is Worth How Many APIs? A Thought Experiment [49.00213183302225]
本稿では, wikiHow 命令をエージェントの配置ポリシーに基礎付けることで, 新たな API を創出するフレームワークを提案する。
大規模言語モデル (LLM) の具体化計画における近年の成功に触発されて, GPT-4 のステアリングを目的とした数発のプロンプトを提案する。
論文 参考訳(メタデータ) (2024-07-10T15:52:44Z) - A Solution-based LLM API-using Methodology for Academic Information Seeking [49.096714812902576]
SoAyは学術情報検索のためのソリューションベースのLLM API利用方法論である。
ソリューションが事前に構築されたAPI呼び出しシーケンスである場合、推論メソッドとしてソリューションを備えたコードを使用する。
その結果、最先端のLLM APIベースのベースラインと比較して34.58-75.99%のパフォーマンス改善が見られた。
論文 参考訳(メタデータ) (2024-05-24T02:44:14Z) - LLM+Reasoning+Planning for supporting incomplete user queries in presence of APIs [0.09374652839580183]
実際には、自然言語のタスク要求(ユーザクエリ)は不完全であることが多い。
論理的推論と古典的AI計画とLLMを併用して,ユーザのクエリを正確に応答する。
提案手法は,完全かつ不完全な単一目標とマルチゴールクエリを含むデータセットにおいて,95%以上の成功率を達成する。
論文 参考訳(メタデータ) (2024-05-21T01:16:34Z) - Reverse Chain: A Generic-Rule for LLMs to Master Multi-API Planning [8.96245399645571]
本稿では,制御可能なターゲット駆動型アプローチであるReverse Chain'を紹介し,プロンプトのみで外部APIを操作可能な大規模言語モデルを提案する。
制御可能な多機能呼び出しを管理するために、Reverse Chainは、後方推論プロセスに基づいたジェネリックルールを採用する。
論文 参考訳(メタデータ) (2023-10-06T05:20:18Z) - Private-Library-Oriented Code Generation with Large Language Models [52.73999698194344]
本稿では,大規模言語モデル(LLM)をプライベートライブラリのコード生成に活用することに焦点を当てる。
プログラマがプライベートコードを書く過程をエミュレートする新しいフレームワークを提案する。
TorchDataEval、TorchDataComplexEval、MonkeyEval、BeatNumEvalの4つのプライベートライブラリベンチマークを作成しました。
論文 参考訳(メタデータ) (2023-07-28T07:43:13Z) - Allies: Prompting Large Language Model with Beam Search [107.38790111856761]
本研究では,ALIESと呼ばれる新しい手法を提案する。
入力クエリが与えられた場合、ALLIESはLLMを活用して、元のクエリに関連する新しいクエリを反復的に生成する。
元のクエリのスコープを反復的に精錬して拡張することにより、ALLIESは直接検索できない隠れた知識をキャプチャし、利用する。
論文 参考訳(メタデータ) (2023-05-24T06:16:44Z) - Binding Language Models in Symbolic Languages [146.3027328556881]
Binderはトレーニング不要のニューラルシンボリックフレームワークで、タスク入力をプログラムにマッピングする。
解析の段階では、Codexは元のプログラミング言語では答えられないタスク入力の一部を特定することができる。
実行段階では、CodexはAPI呼び出しで適切なプロンプトを与えられた万能機能を実行することができる。
論文 参考訳(メタデータ) (2022-10-06T12:55:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。