Adaptive Real-Time Multi-Loss Function Optimization Using Dynamic Memory Fusion Framework: A Case Study on Breast Cancer Segmentation
- URL: http://arxiv.org/abs/2410.19745v1
- Date: Thu, 10 Oct 2024 11:23:04 GMT
- Title: Adaptive Real-Time Multi-Loss Function Optimization Using Dynamic Memory Fusion Framework: A Case Study on Breast Cancer Segmentation
- Authors: Amin Golnari, Mostafa Diba,
- Abstract summary: We propose a novel framework called dynamic memory fusion for adaptive multi-loss function penalizing in real-time.
Experiments on breast ultrasound datasets demonstrate that the framework improves segmentation performance across various metrics.
- Score: 0.0
- License:
- Abstract: Deep learning has proven to be a highly effective tool for a wide range of applications, significantly when leveraging the power of multi-loss functions to optimize performance on multiple criteria simultaneously. However, optimal selection and weighting loss functions in deep learning tasks can significantly influence model performance, yet manual tuning of these functions is often inefficient and inflexible. We propose a novel framework called dynamic memory fusion for adaptive multi-loss function penalizing in real-time to address this. This framework leverages historical loss values data to dynamically adjust the weighting of multiple loss functions throughout the training process. Additionally, this framework integrates an auxiliary loss function to enhance model performance in the early stages. To further research horizons, we introduce the class-balanced dice loss function, designed to address class imbalance by prioritizing underrepresented classes. Experiments on breast ultrasound datasets demonstrate that the framework improves segmentation performance across various metrics. These results demonstrate the effectiveness of our proposed framework in ensuring that the model dynamically adjusts its focus to prioritize the most relevant criteria, leading to improved performance in evolving environments. The source code for our proposed methodology is publicly available on GitHub.
Related papers
- Unlearning as multi-task optimization: A normalized gradient difference approach with an adaptive learning rate [105.86576388991713]
We introduce a normalized gradient difference (NGDiff) algorithm, enabling us to have better control over the trade-off between the objectives.
We provide a theoretical analysis and empirically demonstrate the superior performance of NGDiff among state-of-the-art unlearning methods on the TOFU and MUSE datasets.
arXiv Detail & Related papers (2024-10-29T14:41:44Z) - Gradient Descent Efficiency Index [0.0]
This study introduces a new efficiency metric, Ek, designed to quantify the effectiveness of each iteration.
The proposed metric accounts for both the relative change in error and the stability of the loss function across iterations.
Ek has the potential to guide more informed decisions in the selection and tuning of optimization algorithms in machine learning applications.
arXiv Detail & Related papers (2024-10-25T10:22:22Z) - Memory-Enhanced Neural Solvers for Efficient Adaptation in Combinatorial Optimization [6.713974813995327]
We present MEMENTO, an approach that leverages memory to improve the adaptation of neural solvers at time.
We successfully train all RL auto-regressive solvers on large instances, and show that MEMENTO can scale and is data-efficient.
Overall, MEMENTO enables to push the state-of-the-art on 11 out of 12 evaluated tasks.
arXiv Detail & Related papers (2024-06-24T08:18:19Z) - Fast and Efficient Local Search for Genetic Programming Based Loss
Function Learning [12.581217671500887]
We propose a new meta-learning framework for task and model-agnostic loss function learning via a hybrid search approach.
Results show that the learned loss functions bring improved convergence, sample efficiency, and inference performance on tabulated, computer vision, and natural language processing problems.
arXiv Detail & Related papers (2024-03-01T02:20:04Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
We study the learning process of a two-layer nonlinear convolutional neural network in the presence of spurious features.
Our analysis suggests that imbalanced data groups and easily learnable spurious features can lead to the dominance of spurious features during the learning process.
We propose a new training algorithm called PDE that efficiently enhances the model's robustness for a better worst-group performance.
arXiv Detail & Related papers (2023-06-08T05:44:06Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - FAStEN: An Efficient Adaptive Method for Feature Selection and Estimation in High-Dimensional Functional Regressions [7.674715791336311]
We propose a new, flexible and ultra-efficient approach to perform feature selection in a sparse function-on-function regression problem.
We show how to extend it to the scalar-on-function framework.
We present an application to brain fMRI data from the AOMIC PIOP1 study.
arXiv Detail & Related papers (2023-03-26T19:41:17Z) - Offline Reinforcement Learning with Differentiable Function
Approximation is Provably Efficient [65.08966446962845]
offline reinforcement learning, which aims at optimizing decision-making strategies with historical data, has been extensively applied in real-life applications.
We take a step by considering offline reinforcement learning with differentiable function class approximation (DFA)
Most importantly, we show offline differentiable function approximation is provably efficient by analyzing the pessimistic fitted Q-learning algorithm.
arXiv Detail & Related papers (2022-10-03T07:59:42Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - AutoLoss: Automated Loss Function Search in Recommendations [34.27873944762912]
We propose an AutoLoss framework that can automatically and adaptively search for the appropriate loss function from a set of candidates.
Unlike existing algorithms, the proposed controller can adaptively generate the loss probabilities for different data examples according to their varied convergence behaviors.
arXiv Detail & Related papers (2021-06-12T08:15:00Z) - Progressive Self-Guided Loss for Salient Object Detection [102.35488902433896]
We present a progressive self-guided loss function to facilitate deep learning-based salient object detection in images.
Our framework takes advantage of adaptively aggregated multi-scale features to locate and detect salient objects effectively.
arXiv Detail & Related papers (2021-01-07T07:33:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.