C^2DA: Contrastive and Context-aware Domain Adaptive Semantic Segmentation
- URL: http://arxiv.org/abs/2410.19748v1
- Date: Thu, 10 Oct 2024 15:51:35 GMT
- Title: C^2DA: Contrastive and Context-aware Domain Adaptive Semantic Segmentation
- Authors: Md. Al-Masrur Khan, Zheng Chen, Lantao Liu,
- Abstract summary: Unsupervised domain adaptive semantic segmentation (UDA-SS) aims to train a model on the source domain data and adapt the model to predict target domain data.
Most existing UDA-SS methods only focus on inter-domain knowledge to mitigate the data-shift problem.
We propose a UDA-SS framework that learns both intra-domain and context-aware knowledge.
- Score: 11.721696305235767
- License:
- Abstract: Unsupervised domain adaptive semantic segmentation (UDA-SS) aims to train a model on the source domain data (e.g., synthetic) and adapt the model to predict target domain data (e.g., real-world) without accessing target annotation data. Most existing UDA-SS methods only focus on inter-domain knowledge to mitigate the data-shift problem. However, learning the inherent structure of the images and exploring the intrinsic pixel distribution of both domains are ignored, which prevents the UDA-SS methods from producing satisfactory performance like supervised learning. Moreover, incorporating contextual knowledge is also often overlooked. Considering these issues, in this work, we propose a UDA-SS framework that learns both intra-domain and context-aware knowledge. To learn the intra-domain knowledge, we incorporate contrastive loss in both domains, which pulls pixels of similar classes together and pushes the rest away, facilitating intra-image-pixel-wise correlations. To learn context-aware knowledge, we modify the mixing technique by leveraging contextual dependency among the classes. Moreover, we adapt the Mask Image Modeling (MIM) technique to properly use context clues for robust visual recognition, using limited information about the masked images. Comprehensive experiments validate that our proposed method improves the state-of-the-art UDA-SS methods by a margin of 0.51% mIoU and 0.54% mIoU in the adaptation of GTA-V->Cityscapes and Synthia->Cityscapes, respectively. We open-source our C2DA code. Code link: github.com/Masrur02/C-Squared-DA
Related papers
- SiamSeg: Self-Training with Contrastive Learning for Unsupervised Domain Adaptation Semantic Segmentation in Remote Sensing [14.007392647145448]
UDA enables models to learn from unlabeled target domain data while training on labeled source domain data.
We propose integrating contrastive learning into UDA, enhancing the model's capacity to capture semantic information.
Our SimSeg method outperforms existing approaches, achieving state-of-the-art results.
arXiv Detail & Related papers (2024-10-17T11:59:39Z) - MICDrop: Masking Image and Depth Features via Complementary Dropout for Domain-Adaptive Semantic Segmentation [155.0797148367653]
Unsupervised Domain Adaptation (UDA) is the task of bridging the domain gap between a labeled source domain and an unlabeled target domain.
We propose to leverage geometric information, i.e., depth predictions, as depth discontinuities often coincide with segmentation boundaries.
We show that our method can be plugged into various recent UDA methods and consistently improve results across standard UDA benchmarks.
arXiv Detail & Related papers (2024-08-29T12:15:10Z) - Source-Free Domain Adaptation for Medical Image Segmentation via
Prototype-Anchored Feature Alignment and Contrastive Learning [57.43322536718131]
We present a two-stage source-free domain adaptation (SFDA) framework for medical image segmentation.
In the prototype-anchored feature alignment stage, we first utilize the weights of the pre-trained pixel-wise classifier as source prototypes.
Then, we introduce the bi-directional transport to align the target features with class prototypes by minimizing its expected cost.
arXiv Detail & Related papers (2023-07-19T06:07:12Z) - Spatio-Temporal Pixel-Level Contrastive Learning-based Source-Free
Domain Adaptation for Video Semantic Segmentation [117.39092621796753]
Source Domain Adaptation (SFDA) setup aims to adapt a source-trained model to the target domain without accessing source data.
A novel method that takes full advantage of correlations oftemporal-information to tackle the absence of source data is proposed.
Experiments show that PixelL achieves un-of-the-art performance on benchmarks compared to current UDA and SFDA approaches.
arXiv Detail & Related papers (2023-03-25T05:06:23Z) - MIC: Masked Image Consistency for Context-Enhanced Domain Adaptation [104.40114562948428]
In unsupervised domain adaptation (UDA), a model trained on source data (e.g. synthetic) is adapted to target data (e.g. real-world) without access to target annotation.
We propose a Masked Image Consistency (MIC) module to enhance UDA by learning spatial context relations of the target domain.
MIC significantly improves the state-of-the-art performance across the different recognition tasks for synthetic-to-real, day-to-nighttime, and clear-to-adverse-weather UDA.
arXiv Detail & Related papers (2022-12-02T17:29:32Z) - PiPa: Pixel- and Patch-wise Self-supervised Learning for Domain
Adaptative Semantic Segmentation [100.6343963798169]
Unsupervised Domain Adaptation (UDA) aims to enhance the generalization of the learned model to other domains.
We propose a unified pixel- and patch-wise self-supervised learning framework, called PiPa, for domain adaptive semantic segmentation.
arXiv Detail & Related papers (2022-11-14T18:31:24Z) - CLUDA : Contrastive Learning in Unsupervised Domain Adaptation for
Semantic Segmentation [3.4123736336071864]
CLUDA is a simple, yet novel method for performing unsupervised domain adaptation (UDA) for semantic segmentation.
We extract a multi-level fused-feature map from the encoder, and apply contrastive loss across different classes and different domains.
We produce state-of-the-art results on GTA $rightarrow$ Cityscapes (74.4 mIOU, +0.6) and Synthia $rightarrow$ Cityscapes (67.2 mIOU, +1.4) datasets.
arXiv Detail & Related papers (2022-08-27T05:13:14Z) - Semantic Consistency in Image-to-Image Translation for Unsupervised
Domain Adaptation [22.269565708490465]
Unsupervised Domain Adaptation (UDA) aims to adapt models trained on a source domain to a new target domain where no labelled data is available.
We propose a semantically consistent image-to-image translation method in combination with a consistency regularisation method for UDA.
arXiv Detail & Related papers (2021-11-05T14:22:20Z) - Contrastive Learning and Self-Training for Unsupervised Domain
Adaptation in Semantic Segmentation [71.77083272602525]
UDA attempts to provide efficient knowledge transfer from a labeled source domain to an unlabeled target domain.
We propose a contrastive learning approach that adapts category-wise centroids across domains.
We extend our method with self-training, where we use a memory-efficient temporal ensemble to generate consistent and reliable pseudo-labels.
arXiv Detail & Related papers (2021-05-05T11:55:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.