Pseudolabel guided pixels contrast for domain adaptive semantic segmentation
- URL: http://arxiv.org/abs/2501.09040v1
- Date: Wed, 15 Jan 2025 03:25:25 GMT
- Title: Pseudolabel guided pixels contrast for domain adaptive semantic segmentation
- Authors: Jianzi Xiang, Cailu Wan, Zhu Cao,
- Abstract summary: Unsupervised domain adaptation (UDA) for semantic segmentation is a technique that uses virtual data with labels to train a model and adapts it to real data without labels.
Some recent works use contrastive learning, which is a powerful method for self-supervised learning, to help with this technique.
We propose a novel framework called Pseudo-label Guided Pixel Contrast (PGPC), which overcomes the disadvantages of previous methods.
- Score: 0.9831489366502301
- License:
- Abstract: Semantic segmentation is essential for comprehending images, but the process necessitates a substantial amount of detailed annotations at the pixel level. Acquiring such annotations can be costly in the real-world. Unsupervised domain adaptation (UDA) for semantic segmentation is a technique that uses virtual data with labels to train a model and adapts it to real data without labels. Some recent works use contrastive learning, which is a powerful method for self-supervised learning, to help with this technique. However, these works do not take into account the diversity of features within each class when using contrastive learning, which leads to errors in class prediction. We analyze the limitations of these works and propose a novel framework called Pseudo-label Guided Pixel Contrast (PGPC), which overcomes the disadvantages of previous methods. We also investigate how to use more information from target images without adding noise from pseudo-labels. We test our method on two standard UDA benchmarks and show that it outperforms existing methods. Specifically, we achieve relative improvements of 5.1% mIoU and 4.6% mIoU on the Grand Theft Auto V (GTA5) to Cityscapes and SYNTHIA to Cityscapes tasks based on DAFormer, respectively. Furthermore, our approach can enhance the performance of other UDA approaches without increasing model complexity. Code is available at https://github.com/embar111/pgpc
Related papers
- C^2DA: Contrastive and Context-aware Domain Adaptive Semantic Segmentation [11.721696305235767]
Unsupervised domain adaptive semantic segmentation (UDA-SS) aims to train a model on the source domain data and adapt the model to predict target domain data.
Most existing UDA-SS methods only focus on inter-domain knowledge to mitigate the data-shift problem.
We propose a UDA-SS framework that learns both intra-domain and context-aware knowledge.
arXiv Detail & Related papers (2024-10-10T15:51:35Z) - Unsupervised Domain Adaptation for Semantic Segmentation with Pseudo
Label Self-Refinement [9.69089112870202]
We propose an auxiliary pseudo-label refinement network (PRN) for online refining of the pseudo labels and also localizing the pixels whose predicted labels are likely to be noisy.
We evaluate our approach on benchmark datasets with three different domain shifts, and our approach consistently performs significantly better than the previous state-of-the-art methods.
arXiv Detail & Related papers (2023-10-25T20:31:07Z) - Dense FixMatch: a simple semi-supervised learning method for pixel-wise
prediction tasks [68.36996813591425]
We propose Dense FixMatch, a simple method for online semi-supervised learning of dense and structured prediction tasks.
We enable the application of FixMatch in semi-supervised learning problems beyond image classification by adding a matching operation on the pseudo-labels.
Dense FixMatch significantly improves results compared to supervised learning using only labeled data, approaching its performance with 1/4 of the labeled samples.
arXiv Detail & Related papers (2022-10-18T15:02:51Z) - CLUDA : Contrastive Learning in Unsupervised Domain Adaptation for
Semantic Segmentation [3.4123736336071864]
CLUDA is a simple, yet novel method for performing unsupervised domain adaptation (UDA) for semantic segmentation.
We extract a multi-level fused-feature map from the encoder, and apply contrastive loss across different classes and different domains.
We produce state-of-the-art results on GTA $rightarrow$ Cityscapes (74.4 mIOU, +0.6) and Synthia $rightarrow$ Cityscapes (67.2 mIOU, +1.4) datasets.
arXiv Detail & Related papers (2022-08-27T05:13:14Z) - SePiCo: Semantic-Guided Pixel Contrast for Domain Adaptive Semantic
Segmentation [52.62441404064957]
Domain adaptive semantic segmentation attempts to make satisfactory dense predictions on an unlabeled target domain by utilizing the model trained on a labeled source domain.
Many methods tend to alleviate noisy pseudo labels, however, they ignore intrinsic connections among cross-domain pixels with similar semantic concepts.
We propose Semantic-Guided Pixel Contrast (SePiCo), a novel one-stage adaptation framework that highlights the semantic concepts of individual pixel.
arXiv Detail & Related papers (2022-04-19T11:16:29Z) - AugNet: End-to-End Unsupervised Visual Representation Learning with
Image Augmentation [3.6790362352712873]
We propose AugNet, a new deep learning training paradigm to learn image features from a collection of unlabeled pictures.
Our experiments demonstrate that the method is able to represent the image in low dimensional space.
Unlike many deep-learning-based image retrieval algorithms, our approach does not require access to external annotated datasets.
arXiv Detail & Related papers (2021-06-11T09:02:30Z) - Semi-Supervised Domain Adaptation with Prototypical Alignment and
Consistency Learning [86.6929930921905]
This paper studies how much it can help address domain shifts if we further have a few target samples labeled.
To explore the full potential of landmarks, we incorporate a prototypical alignment (PA) module which calculates a target prototype for each class from the landmarks.
Specifically, we severely perturb the labeled images, making PA non-trivial to achieve and thus promoting model generalizability.
arXiv Detail & Related papers (2021-04-19T08:46:08Z) - Dense Contrastive Learning for Self-Supervised Visual Pre-Training [102.15325936477362]
We present dense contrastive learning, which implements self-supervised learning by optimizing a pairwise contrastive (dis)similarity loss at the pixel level between two views of input images.
Compared to the baseline method MoCo-v2, our method introduces negligible computation overhead (only 1% slower)
arXiv Detail & Related papers (2020-11-18T08:42:32Z) - Reducing the Annotation Effort for Video Object Segmentation Datasets [50.893073670389164]
densely labeling every frame with pixel masks does not scale to large datasets.
We use a deep convolutional network to automatically create pseudo-labels on a pixel level from much cheaper bounding box annotations.
We obtain the new TAO-VOS benchmark, which we make publicly available at www.vision.rwth-aachen.de/page/taovos.
arXiv Detail & Related papers (2020-11-02T17:34:45Z) - Efficient Full Image Interactive Segmentation by Leveraging Within-image
Appearance Similarity [39.17599924322882]
We propose a new approach to interactive full-image semantic segmentation.
We leverage a key observation: propagation from labeled to unlabeled pixels does not necessarily require class-specific knowledge.
We build on this observation and propose an approach capable of jointly propagating pixel labels from multiple classes.
arXiv Detail & Related papers (2020-07-16T08:21:59Z) - SCAN: Learning to Classify Images without Labels [73.69513783788622]
We advocate a two-step approach where feature learning and clustering are decoupled.
A self-supervised task from representation learning is employed to obtain semantically meaningful features.
We obtain promising results on ImageNet, and outperform several semi-supervised learning methods in the low-data regime.
arXiv Detail & Related papers (2020-05-25T18:12:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.