A Human-Centered Approach for Improving Supervised Learning
- URL: http://arxiv.org/abs/2410.19778v1
- Date: Mon, 14 Oct 2024 10:27:14 GMT
- Title: A Human-Centered Approach for Improving Supervised Learning
- Authors: Shubhi Bansal, Atharva Tendulkar, Nagendra Kumar,
- Abstract summary: This paper shows how we can strike a balance between performance, time, and resource constraints.
Another goal of this research is to make Ensembles more explainable and intelligible using the Human-Centered approach.
- Score: 0.44378250612683995
- License:
- Abstract: Supervised Learning is a way of developing Artificial Intelligence systems in which a computer algorithm is trained on labeled data inputs. Effectiveness of a Supervised Learning algorithm is determined by its performance on a given dataset for a particular problem. In case of Supervised Learning problems, Stacking Ensembles usually perform better than individual classifiers due to their generalization ability. Stacking Ensembles combine predictions from multiple Machine Learning algorithms to make final predictions. Inspite of Stacking Ensembles superior performance, the overhead of Stacking Ensembles such as high cost, resources, time, and lack of explainability create challenges in real-life applications. This paper shows how we can strike a balance between performance, time, and resource constraints. Another goal of this research is to make Ensembles more explainable and intelligible using the Human-Centered approach. To achieve the aforementioned goals, we proposed a Human-Centered Behavior-inspired algorithm that streamlines the Ensemble Learning process while also reducing time, cost, and resource overhead, resulting in the superior performance of Supervised Learning in real-world applications. To demonstrate the effectiveness of our method, we perform our experiments on nine real-world datasets. Experimental results reveal that the proposed method satisfies our goals and outperforms the existing methods.
Related papers
- The Role of Learning Algorithms in Collective Action [8.955918346078935]
We show that the effective size and success of a collective are highly dependent on the properties of the learning algorithm.
This highlights the necessity of taking the learning algorithm into account when studying the impact of collective action in machine learning.
arXiv Detail & Related papers (2024-05-10T16:36:59Z) - Compute-Efficient Active Learning [0.0]
Active learning aims at reducing labeling costs by selecting the most informative samples from an unlabeled dataset.
Traditional active learning process often demands extensive computational resources, hindering scalability and efficiency.
We present a novel method designed to alleviate the computational burden associated with active learning on massive datasets.
arXiv Detail & Related papers (2024-01-15T12:32:07Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
We show how off-policy reinforcement learning can enable improved performance under assumptions that are similar but potentially even more practical than those of interactive imitation learning.
Our proposed method uses reinforcement learning with user intervention signals themselves as rewards.
This relaxes the assumption that intervening experts in interactive imitation learning should be near-optimal and enables the algorithm to learn behaviors that improve over the potential suboptimal human expert.
arXiv Detail & Related papers (2023-11-21T21:05:21Z) - Offline Robot Reinforcement Learning with Uncertainty-Guided Human
Expert Sampling [11.751910133386254]
Recent advances in batch (offline) reinforcement learning have shown promising results in learning from available offline data.
We propose a novel approach that uses uncertainty estimation to trigger the injection of human demonstration data.
Our experiments show that this approach is more sample efficient when compared to a naive way of combining expert data with data collected from a sub-optimal agent.
arXiv Detail & Related papers (2022-12-16T01:41:59Z) - Batch Active Learning from the Perspective of Sparse Approximation [12.51958241746014]
Active learning enables efficient model training by leveraging interactions between machine learning agents and human annotators.
We study and propose a novel framework that formulates batch active learning from the sparse approximation's perspective.
Our active learning method aims to find an informative subset from the unlabeled data pool such that the corresponding training loss function approximates its full data pool counterpart.
arXiv Detail & Related papers (2022-11-01T03:20:28Z) - Human-Algorithm Collaboration: Achieving Complementarity and Avoiding
Unfairness [92.26039686430204]
We show that even in carefully-designed systems, complementary performance can be elusive.
First, we provide a theoretical framework for modeling simple human-algorithm systems.
Next, we use this model to prove conditions where complementarity is impossible.
arXiv Detail & Related papers (2022-02-17T18:44:41Z) - Low-Regret Active learning [64.36270166907788]
We develop an online learning algorithm for identifying unlabeled data points that are most informative for training.
At the core of our work is an efficient algorithm for sleeping experts that is tailored to achieve low regret on predictable (easy) instances.
arXiv Detail & Related papers (2021-04-06T22:53:45Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - BUSTLE: Bottom-Up Program Synthesis Through Learning-Guided Exploration [72.88493072196094]
We present a new synthesis approach that leverages learning to guide a bottom-up search over programs.
In particular, we train a model to prioritize compositions of intermediate values during search conditioned on a set of input-output examples.
We show that the combination of learning and bottom-up search is remarkably effective, even with simple supervised learning approaches.
arXiv Detail & Related papers (2020-07-28T17:46:18Z) - Scalable Multi-Task Imitation Learning with Autonomous Improvement [159.9406205002599]
We build an imitation learning system that can continuously improve through autonomous data collection.
We leverage the robot's own trials as demonstrations for tasks other than the one that the robot actually attempted.
In contrast to prior imitation learning approaches, our method can autonomously collect data with sparse supervision for continuous improvement.
arXiv Detail & Related papers (2020-02-25T18:56:42Z) - Leveraging Rationales to Improve Human Task Performance [15.785125079811902]
Given a computational system's performance exceeds that of its human user, can explainable AI capabilities be leveraged to improve the performance of the human?
We introduce the Rationale-Generating Algorithm, an automated technique for generating rationales for utility-based computational methods.
Results show that our approach produces rationales that lead to statistically significant improvement in human task performance.
arXiv Detail & Related papers (2020-02-11T04:51:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.