Deep Learning and Machine Learning -- Python Data Structures and Mathematics Fundamental: From Theory to Practice
- URL: http://arxiv.org/abs/2410.19849v1
- Date: Tue, 22 Oct 2024 06:55:53 GMT
- Title: Deep Learning and Machine Learning -- Python Data Structures and Mathematics Fundamental: From Theory to Practice
- Authors: Silin Chen, Ziqian Bi, Junyu Liu, Benji Peng, Sen Zhang, Xuanhe Pan, Jiawei Xu, Jinlang Wang, Keyu Chen, Caitlyn Heqi Yin, Pohsun Feng, Yizhu Wen, Tianyang Wang, Ming Li, Jintao Ren, Qian Niu, Ming Liu,
- Abstract summary: Book bridges the gap between theoretical mathematics and practical application, focusing on Python.
Includes basic and advanced Python programming, fundamental mathematical operations, matrix operations, linear algebra, and optimization techniques.
Designed for both beginners and advanced learners, the book emphasizes the critical role of mathematical principles in developing scalable AI solutions.
- Score: 17.571124565519263
- License:
- Abstract: This book provides a comprehensive introduction to the foundational concepts of machine learning (ML) and deep learning (DL). It bridges the gap between theoretical mathematics and practical application, focusing on Python as the primary programming language for implementing key algorithms and data structures. The book covers a wide range of topics, including basic and advanced Python programming, fundamental mathematical operations, matrix operations, linear algebra, and optimization techniques crucial for training ML and DL models. Advanced subjects like neural networks, optimization algorithms, and frequency domain methods are also explored, along with real-world applications of large language models (LLMs) and artificial intelligence (AI) in big data management. Designed for both beginners and advanced learners, the book emphasizes the critical role of mathematical principles in developing scalable AI solutions. Practical examples and Python code are provided throughout, ensuring readers gain hands-on experience in applying theoretical knowledge to solve complex problems in ML, DL, and big data analytics.
Related papers
- Learning Algorithms Made Simple [0.0]
We will review the main concepts of artificial intelligence (AI), machine learning (ML), deep learning (DL), and hybrid models.
This article provides brief overview of learning algorithms, exploring their current state, applications and future direction.
arXiv Detail & Related papers (2024-10-11T18:39:25Z) - Deep Learning and Machine Learning, Advancing Big Data Analytics and Management: Handy Appetizer [16.957968437298124]
Book explores the role of Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) in driving the progress of big data analytics and management.
Offers intuitive visualizations and practical case studies to help readers understand how neural networks and technologies like Convolutional Neural Networks (CNNs) work.
arXiv Detail & Related papers (2024-09-25T17:31:45Z) - A Comprehensive Guide to Combining R and Python code for Data Science, Machine Learning and Reinforcement Learning [42.350737545269105]
We show how to run Python's scikit-learn, pytorch and OpenAI gym libraries for building Machine Learning, Deep Learning, and Reinforcement Learning projects easily.
arXiv Detail & Related papers (2024-07-19T23:01:48Z) - On Efficient Training of Large-Scale Deep Learning Models: A Literature
Review [90.87691246153612]
The field of deep learning has witnessed significant progress, particularly in computer vision (CV), natural language processing (NLP), and speech.
The use of large-scale models trained on vast amounts of data holds immense promise for practical applications.
With the increasing demands on computational capacity, a comprehensive summarization on acceleration techniques of training deep learning models is still much anticipated.
arXiv Detail & Related papers (2023-04-07T11:13:23Z) - A Survey of Deep Learning for Mathematical Reasoning [71.88150173381153]
We review the key tasks, datasets, and methods at the intersection of mathematical reasoning and deep learning over the past decade.
Recent advances in large-scale neural language models have opened up new benchmarks and opportunities to use deep learning for mathematical reasoning.
arXiv Detail & Related papers (2022-12-20T18:46:16Z) - Learning with Limited Samples -- Meta-Learning and Applications to
Communication Systems [46.760568562468606]
Few-shot meta-learning optimize learning algorithms that can efficiently adapt to new tasks quickly.
This review monograph provides an introduction to meta-learning by covering principles, algorithms, theory, and engineering applications.
arXiv Detail & Related papers (2022-10-03T17:15:36Z) - JiuZhang: A Chinese Pre-trained Language Model for Mathematical Problem
Understanding [74.12405417718054]
This paper aims to advance the mathematical intelligence of machines by presenting the first Chinese mathematical pre-trained language model(PLM)
Unlike other standard NLP tasks, mathematical texts are difficult to understand, since they involve mathematical terminology, symbols and formulas in the problem statement.
We design a novel curriculum pre-training approach for improving the learning of mathematical PLMs, consisting of both basic and advanced courses.
arXiv Detail & Related papers (2022-06-13T17:03:52Z) - Ten Quick Tips for Deep Learning in Biology [116.78436313026478]
Machine learning is concerned with the development and applications of algorithms that can recognize patterns in data and use them for predictive modeling.
Deep learning has become its own subfield of machine learning.
In the context of biological research, deep learning has been increasingly used to derive novel insights from high-dimensional biological data.
arXiv Detail & Related papers (2021-05-29T21:02:44Z) - A Survey on Large-scale Machine Learning [67.6997613600942]
Machine learning can provide deep insights into data, allowing machines to make high-quality predictions.
Most sophisticated machine learning approaches suffer from huge time costs when operating on large-scale data.
Large-scale Machine Learning aims to learn patterns from big data with comparable performance efficiently.
arXiv Detail & Related papers (2020-08-10T06:07:52Z) - Machine Learning in Python: Main developments and technology trends in
data science, machine learning, and artificial intelligence [3.1314898234563295]
Python continues to be the most preferred language for scientific computing, data science, and machine learning.
This survey offers insight into the field of machine learning with Python, taking a tour through important topics to identify some of the core hardware and software paradigms that have enabled it.
arXiv Detail & Related papers (2020-02-12T05:20:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.