OReole-FM: successes and challenges toward billion-parameter foundation models for high-resolution satellite imagery
- URL: http://arxiv.org/abs/2410.19965v1
- Date: Fri, 25 Oct 2024 20:55:12 GMT
- Title: OReole-FM: successes and challenges toward billion-parameter foundation models for high-resolution satellite imagery
- Authors: Philipe Dias, Aristeidis Tsaris, Jordan Bowman, Abhishek Potnis, Jacob Arndt, H. Lexie Yang, Dalton Lunga,
- Abstract summary: Scaling models to billions of parameters has been shown to yield unprecedented benefits including emergent abilities.
We pair high-performance computing resources including Frontier supercomputer, America's first exascale system, and high-resolution optical RS data to pretrain billion-scale FMs.
- Score: 0.3926357402982764
- License:
- Abstract: While the pretraining of Foundation Models (FMs) for remote sensing (RS) imagery is on the rise, models remain restricted to a few hundred million parameters. Scaling models to billions of parameters has been shown to yield unprecedented benefits including emergent abilities, but requires data scaling and computing resources typically not available outside industry R&D labs. In this work, we pair high-performance computing resources including Frontier supercomputer, America's first exascale system, and high-resolution optical RS data to pretrain billion-scale FMs. Our study assesses performance of different pretrained variants of vision Transformers across image classification, semantic segmentation and object detection benchmarks, which highlight the importance of data scaling for effective model scaling. Moreover, we discuss construction of a novel TIU pretraining dataset, model initialization, with data and pretrained models intended for public release. By discussing technical challenges and details often lacking in the related literature, this work is intended to offer best practices to the geospatial community toward efficient training and benchmarking of larger FMs.
Related papers
- SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - AI Foundation Models in Remote Sensing: A Survey [6.036426846159163]
This paper provides a comprehensive survey of foundation models in the remote sensing domain.
We categorize these models based on their applications in computer vision and domain-specific tasks.
We highlight emerging trends and the significant advancements achieved by these foundation models.
arXiv Detail & Related papers (2024-08-06T22:39:34Z) - Pretraining Billion-scale Geospatial Foundational Models on Frontier [0.16492989697868893]
Foundation Models (FMs) are trained with internet-scale unlabeled data via self-supervised learning.
We investigate billion scale FMs and HPC training profiles for geospatial applications by pretraining on publicly available data.
Our larger 3B parameter size model achieves up to 30% improvement in top1 scene classification accuracy.
arXiv Detail & Related papers (2024-04-17T19:16:32Z) - Fantastic Gains and Where to Find Them: On the Existence and Prospect of
General Knowledge Transfer between Any Pretrained Model [74.62272538148245]
We show that for arbitrary pairings of pretrained models, one model extracts significant data context unavailable in the other.
We investigate if it is possible to transfer such "complementary" knowledge from one model to another without performance degradation.
arXiv Detail & Related papers (2023-10-26T17:59:46Z) - Delving Deeper into Data Scaling in Masked Image Modeling [145.36501330782357]
We conduct an empirical study on the scaling capability of masked image modeling (MIM) methods for visual recognition.
Specifically, we utilize the web-collected Coyo-700M dataset.
Our goal is to investigate how the performance changes on downstream tasks when scaling with different sizes of data and models.
arXiv Detail & Related papers (2023-05-24T15:33:46Z) - Phased Data Augmentation for Training a Likelihood-Based Generative Model with Limited Data [0.0]
Generative models excel in creating realistic images, yet their dependency on extensive datasets for training presents significant challenges.
Current data-efficient methods largely focus on GAN architectures, leaving a gap in training other types of generative models.
"phased data augmentation" is a novel technique that addresses this gap by optimizing training in limited data scenarios without altering the inherent data distribution.
arXiv Detail & Related papers (2023-05-22T03:38:59Z) - A Billion-scale Foundation Model for Remote Sensing Images [5.065947993017157]
Three key factors in pretraining foundation models are the pretraining method, the size of the pretraining dataset, and the number of model parameters.
This paper examines the effect of increasing the number of model parameters on the performance of foundation models in downstream tasks.
To the best of our knowledge, this is the first billion-scale foundation model in the remote sensing field.
arXiv Detail & Related papers (2023-04-11T13:33:45Z) - Towards Efficient Task-Driven Model Reprogramming with Foundation Models [52.411508216448716]
Vision foundation models exhibit impressive power, benefiting from the extremely large model capacity and broad training data.
However, in practice, downstream scenarios may only support a small model due to the limited computational resources or efficiency considerations.
This brings a critical challenge for the real-world application of foundation models: one has to transfer the knowledge of a foundation model to the downstream task.
arXiv Detail & Related papers (2023-04-05T07:28:33Z) - The effectiveness of MAE pre-pretraining for billion-scale pretraining [65.98338857597935]
We introduce an additional pre-pretraining stage that is simple and uses the self-supervised MAE technique to initialize the model.
We measure the effectiveness of pre-pretraining on 10 different visual recognition tasks spanning image classification, video recognition, object detection, low-shot classification and zero-shot recognition.
arXiv Detail & Related papers (2023-03-23T17:56:12Z) - Advancing Plain Vision Transformer Towards Remote Sensing Foundation
Model [97.9548609175831]
We resort to plain vision transformers with about 100 million parameters and make the first attempt to propose large vision models customized for remote sensing tasks.
Specifically, to handle the large image size and objects of various orientations in RS images, we propose a new rotated varied-size window attention.
Experiments on detection tasks demonstrate the superiority of our model over all state-of-the-art models, achieving 81.16% mAP on the DOTA-V1.0 dataset.
arXiv Detail & Related papers (2022-08-08T09:08:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.