Anatomical 3D Style Transfer Enabling Efficient Federated Learning with Extremely Low Communication Costs
- URL: http://arxiv.org/abs/2410.20102v1
- Date: Sat, 26 Oct 2024 07:00:40 GMT
- Title: Anatomical 3D Style Transfer Enabling Efficient Federated Learning with Extremely Low Communication Costs
- Authors: Yuto Shibata, Yasunori Kudo, Yohei Sugawara,
- Abstract summary: We propose a novel federated learning (FL) approach that utilizes 3D style transfer for the multi-organ segmentation task.
By mixing styles based on these clusters, it preserves the anatomical information and leads models to learn intra-organ diversity.
Experiments indicate that our method can maintain its accuracy even in cases where the communication cost is highly limited.
- Score: 1.3654846342364306
- License:
- Abstract: In this study, we propose a novel federated learning (FL) approach that utilizes 3D style transfer for the multi-organ segmentation task. The multi-organ dataset, obtained by integrating multiple datasets, has high scalability and can improve generalization performance as the data volume increases. However, the heterogeneity of data owing to different clients with diverse imaging conditions and target organs can lead to severe overfitting of local models. To align models that overfit to different local datasets, existing methods require frequent communication with the central server, resulting in higher communication costs and risk of privacy leakage. To achieve an efficient and safe FL, we propose an Anatomical 3D Frequency Domain Generalization (A3DFDG) method for FL. A3DFDG utilizes structural information of human organs and clusters the 3D styles based on the location of organs. By mixing styles based on these clusters, it preserves the anatomical information and leads models to learn intra-organ diversity, while aligning the optimization of each local model. Experiments indicate that our method can maintain its accuracy even in cases where the communication cost is highly limited (=1.25% of the original cost) while achieving a significant difference compared to baselines, with a higher global dice similarity coefficient score of 4.3%. Despite its simplicity and minimal computational overhead, these results demonstrate that our method has high practicality in real-world scenarios where low communication costs and a simple pipeline are required. The code used in this project will be publicly available.
Related papers
- Can We Theoretically Quantify the Impacts of Local Updates on the Generalization Performance of Federated Learning? [50.03434441234569]
Federated Learning (FL) has gained significant popularity due to its effectiveness in training machine learning models across diverse sites without requiring direct data sharing.
While various algorithms have shown that FL with local updates is a communication-efficient distributed learning framework, the generalization performance of FL with local updates has received comparatively less attention.
arXiv Detail & Related papers (2024-09-05T19:00:18Z) - A Federated Learning-Friendly Approach for Parameter-Efficient Fine-Tuning of SAM in 3D Segmentation [5.011091042850546]
Adapting foundation models for medical image analysis requires finetuning them on a considerable amount of data.
collecting task-specific medical data for such finetuning at a central location raises many privacy concerns.
Although Federated learning (FL) provides an effective means for training on private decentralized data, communication costs in federating large foundation models can quickly become a significant bottleneck.
arXiv Detail & Related papers (2024-07-31T16:48:06Z) - Multi-level Personalized Federated Learning on Heterogeneous and Long-Tailed Data [10.64629029156029]
We introduce an innovative personalized Federated Learning framework, Multi-level Personalized Federated Learning (MuPFL)
MuPFL integrates three pivotal modules: Biased Activation Value Dropout (BAVD), Adaptive Cluster-based Model Update (ACMU) and Prior Knowledge-assisted Fine-tuning (PKCF)
Experiments on diverse real-world datasets show that MuPFL consistently outperforms state-of-the-art baselines, even under extreme non-i.i.d. and long-tail conditions.
arXiv Detail & Related papers (2024-05-10T11:52:53Z) - Leveraging Frequency Domain Learning in 3D Vessel Segmentation [50.54833091336862]
In this study, we leverage Fourier domain learning as a substitute for multi-scale convolutional kernels in 3D hierarchical segmentation models.
We show that our novel network achieves remarkable dice performance (84.37% on ASACA500 and 80.32% on ImageCAS) in tubular vessel segmentation tasks.
arXiv Detail & Related papers (2024-01-11T19:07:58Z) - pFedES: Model Heterogeneous Personalized Federated Learning with Feature
Extractor Sharing [19.403843478569303]
We propose a model-heterogeneous personalized Federated learning approach based on feature extractor sharing.
It incorporates a small homogeneous feature extractor into each client's heterogeneous local model.
It achieves 1.61% higher test accuracy, while reducing communication and computation costs by 99.6% and 82.9%, respectively.
arXiv Detail & Related papers (2023-11-12T15:43:39Z) - Vicinal Feature Statistics Augmentation for Federated 3D Medical Volume
Segmentation [17.096806029281385]
Federated learning (FL) enables multiple client medical institutes collaboratively train a deep learning (DL) model with privacy protection.
However, the performance of FL can be constrained by the limited availability of labeled data in small institutes and the heterogeneous (i.e., non-i.i.d.) data distribution across institutes.
We develop a vicinal feature-level data augmentation scheme to efficiently alleviate the local feature shift and facilitate collaborative training for privacy-aware FL segmentation.
arXiv Detail & Related papers (2023-10-23T21:14:52Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
Federated learning(FL) has recently attracted increasing attention from academia and industry.
We propose FedDM to build the global training objective from multiple local surrogate functions.
In detail, we construct synthetic sets of data on each client to locally match the loss landscape from original data.
arXiv Detail & Related papers (2022-07-20T04:55:18Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - CosSGD: Nonlinear Quantization for Communication-efficient Federated
Learning [62.65937719264881]
Federated learning facilitates learning across clients without transferring local data on these clients to a central server.
We propose a nonlinear quantization for compressed gradient descent, which can be easily utilized in federated learning.
Our system significantly reduces the communication cost by up to three orders of magnitude, while maintaining convergence and accuracy of the training process.
arXiv Detail & Related papers (2020-12-15T12:20:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.