On-Site Precise Screening of SARS-CoV-2 Systems Using a Channel-Wise Attention-Based PLS-1D-CNN Model with Limited Infrared Signatures
- URL: http://arxiv.org/abs/2410.20132v1
- Date: Sat, 26 Oct 2024 09:22:35 GMT
- Title: On-Site Precise Screening of SARS-CoV-2 Systems Using a Channel-Wise Attention-Based PLS-1D-CNN Model with Limited Infrared Signatures
- Authors: Wenwen Zhang, Zhouzhuo Tang, Yingmei Feng, Xia Yu, Qi Jie Wang, Zhiping Lin,
- Abstract summary: We present a methodology that integrates attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) with the adaptive iteratively reweighted penalized least squares (airPLS) preprocessing algorithm and a channel-wise attention-based convolutional neural network (PLS-1D-CNN) model.
Our model outperforms recently reported methods in the field of respiratory virus spectrum detection, achieving a recognition screening accuracy of 96.48%, a sensitivity of 96.24%, a specificity of 97.14%, an F1-score of 96.12%, and an AUC of 0.99.
- Score: 14.03608399920969
- License:
- Abstract: During the early stages of respiratory virus outbreaks, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the efficient utilize of limited nasopharyngeal swabs for rapid and accurate screening is crucial for public health. In this study, we present a methodology that integrates attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) with the adaptive iteratively reweighted penalized least squares (airPLS) preprocessing algorithm and a channel-wise attention-based partial least squares one-dimensional convolutional neural network (PLS-1D-CNN) model, enabling accurate screening of infected individuals within 10 minutes. Two cohorts of nasopharyngeal swab samples, comprising 126 and 112 samples from suspected SARS-CoV-2 Omicron variant cases, were collected at Beijing You'an Hospital for verification. Given that ATR-FTIR spectra are highly sensitive to variations in experimental conditions, which can affect their quality, we propose a biomolecular importance (BMI) evaluation method to assess signal quality across different conditions, validated by comparing BMI with PLS-GBM and PLS-RF results. For the ATR-FTIR signals in cohort 2, which exhibited a higher BMI, airPLS was utilized for signal preprocessing, followed by the application of the channel-wise attention-based PLS-1D-CNN model for screening. The experimental results demonstrate that our model outperforms recently reported methods in the field of respiratory virus spectrum detection, achieving a recognition screening accuracy of 96.48%, a sensitivity of 96.24%, a specificity of 97.14%, an F1-score of 96.12%, and an AUC of 0.99. It meets the World Health Organization (WHO) recommended criteria for an acceptable product: sensitivity of 95.00% or greater and specificity of 97.00% or greater for testing prior SARS-CoV-2 infection in moderate to high volume scenarios.
Related papers
- On the effectiveness of smartphone IMU sensors and Deep Learning in the detection of cardiorespiratory conditions [0.21987601456703473]
This research introduces an innovative method for the early screening of cardiorespiratory diseases based on an acquisition protocol.
We collected, in a clinical setting, a dataset featuring recordings of breathing kinematics obtained by accelerometer and gyroscope readings from five distinct body regions.
We propose an end-to-end deep learning pipeline for early cardiorespiratory disease screening, incorporating a preprocessing step segmenting the data into individual breathing cycles.
arXiv Detail & Related papers (2024-08-27T18:29:47Z) - COVID-19 Detection from Exhaled Breath [0.4321423008988813]
SARS-CoV-2 coronavirus emerged in 2019, causing a COVID-19 pandemic.
In this paper, we introduce a cheap, fast, and non-invasive detection system, which exploits only the exhaled breath.
Despite the simplicity of use, our system showed a performance comparable to the traditional polymerase-chain-reaction and antigen testing.
arXiv Detail & Related papers (2023-05-30T17:01:53Z) - Frequency comb and machine learning-based breath analysis for COVID-19
classification [0.6113111451963646]
We present a robust analytical method that simultaneously measures tens of thousands of spectral features in each breath sample.
Using 170 individual samples at the University of Colorado, we report a cross-validated area under the Receiver-Operating-Characteristics curve of 0.849(4).
This method detected a significant difference between male and female breath as well as other variables such as smoking and abdominal pain.
arXiv Detail & Related papers (2022-02-04T05:58:52Z) - Controlling False Positive/Negative Rates for Deep-Learning-Based
Prostate Cancer Detection on Multiparametric MR images [58.85481248101611]
We propose a novel PCa detection network that incorporates a lesion-level cost-sensitive loss and an additional slice-level loss based on a lesion-to-slice mapping function.
Our experiments based on 290 clinical patients concludes that 1) The lesion-level FNR was effectively reduced from 0.19 to 0.10 and the lesion-level FPR was reduced from 1.03 to 0.66 by changing the lesion-level cost.
arXiv Detail & Related papers (2021-06-04T09:51:27Z) - Quantification of pulmonary involvement in COVID-19 pneumonia by means
of a cascade oftwo U-nets: training and assessment on multipledatasets using
different annotation criteria [83.83783947027392]
This study aims at exploiting Artificial intelligence (AI) for the identification, segmentation and quantification of COVID-19 pulmonary lesions.
We developed an automated analysis pipeline, the LungQuant system, based on a cascade of two U-nets.
The accuracy in predicting the CT-Severity Score (CT-SS) of the LungQuant system has been also evaluated.
arXiv Detail & Related papers (2021-05-06T10:21:28Z) - A 1D-CNN Based Deep Learning Technique for Sleep Apnea Detection in IoT
Sensors [3.2116198597240846]
This paper introduces a novel method for apnea detection (pause in breathing) from electrocardiogram (ECG) signals obtained from wearable devices.
The novelty stems from the high resolution of apnea detection on a second-by-second basis.
This model outperforms several lower resolution state-of-the-art apnea detection methods.
arXiv Detail & Related papers (2021-05-02T18:35:57Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
In this study, 18 non-invasive features (age, gender, left ventricular ejection fraction and 15 obtained from HRV) of 243 subjects were used to train and validate a series of several ANN.
The best result was obtained using 7 input parameters and 7 hidden nodes with an accuracy of 98.9% and 82% for the training and validation dataset.
arXiv Detail & Related papers (2020-10-29T19:14:41Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
The novel coronavirus (SARS-CoV-2) has led to a pandemic.
The current testing regime based on Reverse Transcription-Polymerase Chain Reaction for SARS-CoV-2 has been unable to keep up with testing demands.
We propose a framework called CovidDeep that combines efficient DNNs with commercially available WMSs for pervasive testing of the virus.
arXiv Detail & Related papers (2020-07-20T21:47:28Z) - COVID-Net S: Towards computer-aided severity assessment via training and
validation of deep neural networks for geographic extent and opacity extent
scoring of chest X-rays for SARS-CoV-2 lung disease severity [58.23203766439791]
Chest x-rays (CXRs) are often used to assess SARS-CoV-2 severity.
In this study, we assess the feasibility of computer-aided scoring of CXRs of SARS-CoV-2 lung disease severity using a deep learning system.
arXiv Detail & Related papers (2020-05-26T16:33:52Z) - Deep Learning Based Detection and Localization of Intracranial Aneurysms
in Computed Tomography Angiography [5.973882600944421]
A two-step model was implemented: a 3D region proposal network for initial aneurysm detection and 3D DenseNetsfor false-positive reduction.
Our model showed statistically higher accuracy, sensitivity, and specificity when compared to the available model at 0.25 FPPV and the best F-1 score.
arXiv Detail & Related papers (2020-05-22T10:49:23Z) - Automated Quantification of CT Patterns Associated with COVID-19 from
Chest CT [48.785596536318884]
The proposed method takes as input a non-contrasted chest CT and segments the lesions, lungs, and lobes in three dimensions.
The method outputs two combined measures of the severity of lung and lobe involvement, quantifying both the extent of COVID-19 abnormalities and presence of high opacities.
Evaluation of the algorithm is reported on CTs of 200 participants (100 COVID-19 confirmed patients and 100 healthy controls) from institutions from Canada, Europe and the United States.
arXiv Detail & Related papers (2020-04-02T21:49:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.