Deep Learning Based Detection and Localization of Intracranial Aneurysms
in Computed Tomography Angiography
- URL: http://arxiv.org/abs/2005.11098v2
- Date: Tue, 14 Dec 2021 20:03:17 GMT
- Title: Deep Learning Based Detection and Localization of Intracranial Aneurysms
in Computed Tomography Angiography
- Authors: Dufan Wu, Daniel Montes, Ziheng Duan, Yangsibo Huang, Javier M.
Romero, Ramon Gilberto Gonzalez, Quanzheng Li
- Abstract summary: A two-step model was implemented: a 3D region proposal network for initial aneurysm detection and 3D DenseNetsfor false-positive reduction.
Our model showed statistically higher accuracy, sensitivity, and specificity when compared to the available model at 0.25 FPPV and the best F-1 score.
- Score: 5.973882600944421
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Purpose: To develop CADIA, a supervised deep learning model based on a region
proposal network coupled with a false-positive reduction module for the
detection and localization of intracranial aneurysms (IA) from computed
tomography angiography (CTA), and to assess our model's performance to a
similar detection network. Methods: In this retrospective study, we evaluated
1,216 patients from two separate institutions who underwent CT for the presence
of saccular IA>=2.5 mm. A two-step model was implemented: a 3D region proposal
network for initial aneurysm detection and 3D DenseNetsfor false-positive
reduction and further determination of suspicious IA. Free-response receiver
operative characteristics (FROC) curve and lesion-/patient-level performance at
established false positive per volume (FPPV) were also performed. Fisher's
exact test was used to compare with a similar available model. Results: CADIA's
sensitivities at 0.25 and 1 FPPV were 63.9% and 77.5%, respectively. Our
model's performance varied with size and location, and the best performance was
achieved in IA between 5-10 mm and in those at anterior communicating artery,
with sensitivities at 1 FPPV of 95.8% and 94%, respectively. Our model showed
statistically higher patient-level accuracy, sensitivity, and specificity when
compared to the available model at 0.25 FPPV and the best F-1 score (P<=0.001).
At 1 FPPV threshold, our model showed better accuracy and specificity
(P<=0.001) and equivalent sensitivity. Conclusions: CADIA outperformed a
comparable network in the detection task of IA. The addition of a
false-positive reduction module is a feasible step to improve the IA detection
models.
Related papers
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Multi-centric AI Model for Unruptured Intracranial Aneurysm Detection and Volumetric Segmentation in 3D TOF-MRI [6.397650339311053]
We developed an open-source nnU-Net-based AI model for combined detection and segmentation of unruptured intracranial aneurysms (UICA) in 3D TOF-MRI.
Four distinct training datasets were created, and the nnU-Net framework was used for model development.
The primary model showed 85% sensitivity and 0.23 FP/case rate, outperforming the ADAM-challenge winner (61%) and a nnU-Net trained on ADAM data (51%) in sensitivity.
arXiv Detail & Related papers (2024-08-30T08:57:04Z) - Comparative Performance Analysis of Transformer-Based Pre-Trained Models for Detecting Keratoconus Disease [0.0]
This study compares eight pre-trained CNNs for diagnosing keratoconus, a degenerative eye disease.
MobileNetV2 was the best accurate model in identifying keratoconus and normal cases with few misclassifications.
arXiv Detail & Related papers (2024-08-16T20:15:24Z) - A Federated Learning Framework for Stenosis Detection [70.27581181445329]
This study explores the use of Federated Learning (FL) for stenosis detection in coronary angiography images (CA)
Two heterogeneous datasets from two institutions were considered: dataset 1 includes 1219 images from 200 patients, which we acquired at the Ospedale Riuniti of Ancona (Italy)
dataset 2 includes 7492 sequential images from 90 patients from a previous study available in the literature.
arXiv Detail & Related papers (2023-10-30T11:13:40Z) - Weakly supervised segmentation of intracranial aneurysms using a novel 3D focal modulation UNet [0.5106162890866905]
We propose FocalSegNet, a novel 3D focal modulation UNet, to detect an aneurysm and offer an initial, coarse segmentation of it from time-of-flight MRA image patches.
We trained and evaluated our model on a public dataset, and in terms of UIA detection, our model showed a low false-positive rate of 0.21 and a high sensitivity of 0.80.
arXiv Detail & Related papers (2023-08-06T03:28:08Z) - An Efficient End-to-End Deep Neural Network for Interstitial Lung
Disease Recognition and Classification [0.5424799109837065]
This paper introduces an end-to-end deep convolution neural network (CNN) for classifying ILDs patterns.
The proposed model comprises four convolutional layers with different kernel sizes and Rectified Linear Unit (ReLU) activation function.
A dataset consisting of 21328 image patches of 128 CT scans with five classes is taken to train and assess the proposed model.
arXiv Detail & Related papers (2022-04-21T06:36:10Z) - Detection of Large Vessel Occlusions using Deep Learning by Deforming
Vessel Tree Segmentations [5.408694811103598]
This work uses convolutional neural networks for case-level classification trained with elastic deformation of the vessel tree segmentation masks to artificially augment training data.
The neural network classifies the presence of an LVO and the affected hemisphere.
In a 5-fold cross validated ablation study, we demonstrate that the use of the suggested augmentation enables us to train robust models even from few data sets.
arXiv Detail & Related papers (2021-12-03T09:07:29Z) - Systematic Clinical Evaluation of A Deep Learning Method for Medical
Image Segmentation: Radiosurgery Application [48.89674088331313]
We systematically evaluate a Deep Learning (DL) method in a 3D medical image segmentation task.
Our method is integrated into the radiosurgery treatment process and directly impacts the clinical workflow.
arXiv Detail & Related papers (2021-08-21T16:15:40Z) - Prediction of progressive lens performance from neural network
simulations [62.997667081978825]
The purpose of this study is to present a framework to predict visual acuity (VA) based on a convolutional neural network (CNN)
The proposed holistic simulation tool was shown to act as an accurate model for subjective visual performance.
arXiv Detail & Related papers (2021-03-19T14:51:02Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
We propose a Modified Pseudo-3D Feature Pyramid Network (MP3D FPN) to efficiently extract 3D context enhanced 2D features for universal lesion detection in CT slices.
With the novel pre-training method, the proposed MP3D FPN achieves state-of-the-art detection performance on the DeepLesion dataset.
The proposed 3D pre-trained weights can potentially be used to boost the performance of other 3D medical image analysis tasks.
arXiv Detail & Related papers (2020-12-16T07:11:16Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
The novel coronavirus (SARS-CoV-2) has led to a pandemic.
The current testing regime based on Reverse Transcription-Polymerase Chain Reaction for SARS-CoV-2 has been unable to keep up with testing demands.
We propose a framework called CovidDeep that combines efficient DNNs with commercially available WMSs for pervasive testing of the virus.
arXiv Detail & Related papers (2020-07-20T21:47:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.