AdaNeg: Adaptive Negative Proxy Guided OOD Detection with Vision-Language Models
- URL: http://arxiv.org/abs/2410.20149v1
- Date: Sat, 26 Oct 2024 11:20:02 GMT
- Title: AdaNeg: Adaptive Negative Proxy Guided OOD Detection with Vision-Language Models
- Authors: Yabin Zhang, Lei Zhang,
- Abstract summary: Pre-trained vision-language models are effective at identifying out-of-distribution (OOD) samples by using negative labels as guidance.
We introduce textitadaptive negative proxies, which are dynamically generated during testing by exploring actual OOD images.
Our approach significantly outperforms existing methods, with a 2.45% increase in AUROC and a 6.48% reduction in FPR95.
- Score: 15.754054667010468
- License:
- Abstract: Recent research has shown that pre-trained vision-language models are effective at identifying out-of-distribution (OOD) samples by using negative labels as guidance. However, employing consistent negative labels across different OOD datasets often results in semantic misalignments, as these text labels may not accurately reflect the actual space of OOD images. To overcome this issue, we introduce \textit{adaptive negative proxies}, which are dynamically generated during testing by exploring actual OOD images, to align more closely with the underlying OOD label space and enhance the efficacy of negative proxy guidance. Specifically, our approach utilizes a feature memory bank to selectively cache discriminative features from test images, representing the targeted OOD distribution. This facilitates the creation of proxies that can better align with specific OOD datasets. While task-adaptive proxies average features to reflect the unique characteristics of each dataset, the sample-adaptive proxies weight features based on their similarity to individual test samples, exploring detailed sample-level nuances. The final score for identifying OOD samples integrates static negative labels with our proposed adaptive proxies, effectively combining textual and visual knowledge for enhanced performance. Our method is training-free and annotation-free, and it maintains fast testing speed. Extensive experiments across various benchmarks demonstrate the effectiveness of our approach, abbreviated as AdaNeg. Notably, on the large-scale ImageNet benchmark, our AdaNeg significantly outperforms existing methods, with a 2.45\% increase in AUROC and a 6.48\% reduction in FPR95. Codes are available at \url{https://github.com/YBZh/OpenOOD-VLM}.
Related papers
- Rethinking the Evaluation of Out-of-Distribution Detection: A Sorites Paradox [70.57120710151105]
Most existing out-of-distribution (OOD) detection benchmarks classify samples with novel labels as the OOD data.
Some marginal OOD samples actually have close semantic contents to the in-distribution (ID) sample, which makes determining the OOD sample a Sorites Paradox.
We construct a benchmark named Incremental Shift OOD (IS-OOD) to address the issue.
arXiv Detail & Related papers (2024-06-14T09:27:56Z) - Negative Label Guided OOD Detection with Pretrained Vision-Language Models [96.67087734472912]
Out-of-distribution (OOD) detection aims at identifying samples from unknown classes.
We propose a novel post hoc OOD detection method, called NegLabel, which takes a vast number of negative labels from extensive corpus databases.
arXiv Detail & Related papers (2024-03-29T09:19:52Z) - Model-free Test Time Adaptation for Out-Of-Distribution Detection [62.49795078366206]
We propose a Non-Parametric Test Time textbfAdaptation framework for textbfDistribution textbfDetection (abbr)
abbr utilizes online test samples for model adaptation during testing, enhancing adaptability to changing data distributions.
We demonstrate the effectiveness of abbr through comprehensive experiments on multiple OOD detection benchmarks.
arXiv Detail & Related papers (2023-11-28T02:00:47Z) - AUTO: Adaptive Outlier Optimization for Online Test-Time OOD Detection [81.49353397201887]
Out-of-distribution (OOD) detection is crucial to deploying machine learning models in open-world applications.
We introduce a novel paradigm called test-time OOD detection, which utilizes unlabeled online data directly at test time to improve OOD detection performance.
We propose adaptive outlier optimization (AUTO), which consists of an in-out-aware filter, an ID memory bank, and a semantically-consistent objective.
arXiv Detail & Related papers (2023-03-22T02:28:54Z) - A Simple Test-Time Method for Out-of-Distribution Detection [45.11199798139358]
This paper proposes a simple Test-time Linear Training (ETLT) method for OOD detection.
We find that the probabilities of input images being out-of-distribution are surprisingly linearly correlated to the features extracted by neural networks.
We propose an online variant of the proposed method, which achieves promising performance and is more practical in real-world applications.
arXiv Detail & Related papers (2022-07-17T16:02:58Z) - Self-Supervised Anomaly Detection by Self-Distillation and Negative
Sampling [1.304892050913381]
We show that self-distillation of the in-distribution training set together with contrasting against negative examples strongly improves OOD detection.
We observe that by leveraging negative samples, which keep the statistics of low-level features while changing the high-level semantics, higher average detection performance is obtained.
arXiv Detail & Related papers (2022-01-17T12:33:14Z) - Label Smoothed Embedding Hypothesis for Out-of-Distribution Detection [72.35532598131176]
We propose an unsupervised method to detect OOD samples using a $k$-NN density estimate.
We leverage a recent insight about label smoothing, which we call the emphLabel Smoothed Embedding Hypothesis
We show that our proposal outperforms many OOD baselines and also provide new finite-sample high-probability statistical results.
arXiv Detail & Related papers (2021-02-09T21:04:44Z) - Learn what you can't learn: Regularized Ensembles for Transductive
Out-of-distribution Detection [76.39067237772286]
We show that current out-of-distribution (OOD) detection algorithms for neural networks produce unsatisfactory results in a variety of OOD detection scenarios.
This paper studies how such "hard" OOD scenarios can benefit from adjusting the detection method after observing a batch of the test data.
We propose a novel method that uses an artificial labeling scheme for the test data and regularization to obtain ensembles of models that produce contradictory predictions only on the OOD samples in a test batch.
arXiv Detail & Related papers (2020-12-10T16:55:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.