Label Smoothed Embedding Hypothesis for Out-of-Distribution Detection
- URL: http://arxiv.org/abs/2102.05131v1
- Date: Tue, 9 Feb 2021 21:04:44 GMT
- Title: Label Smoothed Embedding Hypothesis for Out-of-Distribution Detection
- Authors: Dara Bahri and Heinrich Jiang and Yi Tay and Donald Metzler
- Abstract summary: We propose an unsupervised method to detect OOD samples using a $k$-NN density estimate.
We leverage a recent insight about label smoothing, which we call the emphLabel Smoothed Embedding Hypothesis
We show that our proposal outperforms many OOD baselines and also provide new finite-sample high-probability statistical results.
- Score: 72.35532598131176
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detecting out-of-distribution (OOD) examples is critical in many
applications. We propose an unsupervised method to detect OOD samples using a
$k$-NN density estimate with respect to a classification model's intermediate
activations on in-distribution samples. We leverage a recent insight about
label smoothing, which we call the \emph{Label Smoothed Embedding Hypothesis},
and show that one of the implications is that the $k$-NN density estimator
performs better as an OOD detection method both theoretically and empirically
when the model is trained with label smoothing. Finally, we show that our
proposal outperforms many OOD baselines and also provide new finite-sample
high-probability statistical results for $k$-NN density estimation's ability to
detect OOD examples.
Related papers
- Rethinking the Evaluation of Out-of-Distribution Detection: A Sorites Paradox [70.57120710151105]
Most existing out-of-distribution (OOD) detection benchmarks classify samples with novel labels as the OOD data.
Some marginal OOD samples actually have close semantic contents to the in-distribution (ID) sample, which makes determining the OOD sample a Sorites Paradox.
We construct a benchmark named Incremental Shift OOD (IS-OOD) to address the issue.
arXiv Detail & Related papers (2024-06-14T09:27:56Z) - ConjNorm: Tractable Density Estimation for Out-of-Distribution Detection [41.41164637577005]
Post-hoc out-of-distribution (OOD) detection has garnered intensive attention in reliable machine learning.
We propose a novel theoretical framework grounded in Bregman divergence to provide a unified perspective on density-based score design.
We show that our proposed textscConjNorm has established a new state-of-the-art in a variety of OOD detection setups.
arXiv Detail & Related papers (2024-02-27T21:02:47Z) - Model-free Test Time Adaptation for Out-Of-Distribution Detection [62.49795078366206]
We propose a Non-Parametric Test Time textbfAdaptation framework for textbfDistribution textbfDetection (abbr)
abbr utilizes online test samples for model adaptation during testing, enhancing adaptability to changing data distributions.
We demonstrate the effectiveness of abbr through comprehensive experiments on multiple OOD detection benchmarks.
arXiv Detail & Related papers (2023-11-28T02:00:47Z) - FLatS: Principled Out-of-Distribution Detection with Feature-Based
Likelihood Ratio Score [2.9914612342004503]
FLatS is a principled solution for OOD detection based on likelihood ratio.
We demonstrate that FLatS can serve as a general framework capable of enhancing other OOD detection methods.
Experiments show that FLatS establishes a new SOTA on popular benchmarks.
arXiv Detail & Related papers (2023-10-08T09:16:46Z) - Estimating Soft Labels for Out-of-Domain Intent Detection [122.68266151023676]
Out-of-Domain (OOD) intent detection is important for practical dialog systems.
We propose an adaptive soft pseudo labeling (ASoul) method that can estimate soft labels for pseudo OOD samples.
arXiv Detail & Related papers (2022-11-10T13:31:13Z) - WOOD: Wasserstein-based Out-of-Distribution Detection [6.163329453024915]
Training data for deep-neural-network-based classifiers are usually assumed to be sampled from the same distribution.
When part of the test samples are drawn from a distribution that is far away from that of the training samples, the trained neural network has a tendency to make high confidence predictions for these OOD samples.
We propose a Wasserstein-based out-of-distribution detection (WOOD) method to overcome these challenges.
arXiv Detail & Related papers (2021-12-13T02:35:15Z) - Statistical Testing for Efficient Out of Distribution Detection in Deep
Neural Networks [26.0303701309125]
This paper frames the Out Of Distribution (OOD) detection problem in Deep Neural Networks as a statistical hypothesis testing problem.
We build on this framework to suggest a novel OOD procedure based on low-order statistics.
Our method achieves comparable or better than state-of-the-art results on well-accepted OOD benchmarks without retraining the network parameters.
arXiv Detail & Related papers (2021-02-25T16:14:47Z) - Learn what you can't learn: Regularized Ensembles for Transductive
Out-of-distribution Detection [76.39067237772286]
We show that current out-of-distribution (OOD) detection algorithms for neural networks produce unsatisfactory results in a variety of OOD detection scenarios.
This paper studies how such "hard" OOD scenarios can benefit from adjusting the detection method after observing a batch of the test data.
We propose a novel method that uses an artificial labeling scheme for the test data and regularization to obtain ensembles of models that produce contradictory predictions only on the OOD samples in a test batch.
arXiv Detail & Related papers (2020-12-10T16:55:13Z) - Multi-Task Curriculum Framework for Open-Set Semi-Supervised Learning [54.85397562961903]
Semi-supervised learning (SSL) has been proposed to leverage unlabeled data for training powerful models when only limited labeled data is available.
We address a more complex novel scenario named open-set SSL, where out-of-distribution (OOD) samples are contained in unlabeled data.
Our method achieves state-of-the-art results by successfully eliminating the effect of OOD samples.
arXiv Detail & Related papers (2020-07-22T10:33:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.