論文の概要: Transferable Adversarial Attacks on SAM and Its Downstream Models
- arxiv url: http://arxiv.org/abs/2410.20197v1
- Date: Sat, 26 Oct 2024 15:04:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:18:09.462493
- Title: Transferable Adversarial Attacks on SAM and Its Downstream Models
- Title(参考訳): SAMとその下流モデルにおけるトランスファー可能な敵攻撃
- Authors: Song Xia, Wenhan Yang, Yi Yu, Xun Lin, Henghui Ding, Lingyu Duan, Xudong Jiang,
- Abstract要約: 本稿では,セグメント・アプライス・モデル(SAM)から微調整した様々な下流モデルに対する敵攻撃の可能性について検討する。
未知のデータセットを微調整したモデルに対する敵攻撃の有効性を高めるために,ユニバーサルメタ初期化(UMI)アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 87.23908485521439
- License:
- Abstract: The utilization of large foundational models has a dilemma: while fine-tuning downstream tasks from them holds promise for making use of the well-generalized knowledge in practical applications, their open accessibility also poses threats of adverse usage. This paper, for the first time, explores the feasibility of adversarial attacking various downstream models fine-tuned from the segment anything model (SAM), by solely utilizing the information from the open-sourced SAM. In contrast to prevailing transfer-based adversarial attacks, we demonstrate the existence of adversarial dangers even without accessing the downstream task and dataset to train a similar surrogate model. To enhance the effectiveness of the adversarial attack towards models fine-tuned on unknown datasets, we propose a universal meta-initialization (UMI) algorithm to extract the intrinsic vulnerability inherent in the foundation model, which is then utilized as the prior knowledge to guide the generation of adversarial perturbations. Moreover, by formulating the gradient difference in the attacking process between the open-sourced SAM and its fine-tuned downstream models, we theoretically demonstrate that a deviation occurs in the adversarial update direction by directly maximizing the distance of encoded feature embeddings in the open-sourced SAM. Consequently, we propose a gradient robust loss that simulates the associated uncertainty with gradient-based noise augmentation to enhance the robustness of generated adversarial examples (AEs) towards this deviation, thus improving the transferability. Extensive experiments demonstrate the effectiveness of the proposed universal meta-initialized and gradient robust adversarial attack (UMI-GRAT) toward SAMs and their downstream models. Code is available at https://github.com/xiasong0501/GRAT.
- Abstract(参考訳): 大規模な基礎モデルの利用にはジレンマがある: より微調整された下流タスクは、実用的なアプリケーションでよく一般化された知識を活用することを約束する一方で、それらのオープンアクセシビリティは、悪用の脅威も引き起こす。
本論文は,オープンソースSAMからの情報のみを利用して,セグメントアプライスモデル(SAM)から微調整した様々な下流モデルに対する敵攻撃の可能性について,初めて検討する。
転送ベースの敵攻撃とは対照的に、下流のタスクやデータセットにアクセスしなくても、同様の代理モデルを訓練する敵の危険の存在を実証する。
未知のデータセットを微調整したモデルに対する敵対的攻撃の有効性を高めるために,基本モデルに固有の本質的脆弱性を抽出する共通メタ初期化(UMI)アルゴリズムを提案する。
さらに、オープンソースのSAMとその微調整された下流モデル間の攻撃過程の勾配差を定式化することにより、オープンソースSAMにエンコードされた特徴埋め込みの距離を直接最大化することにより、逆更新方向に偏差が生じることを理論的に証明する。
そこで本研究では,このずれに対して発生した逆例(AE)のロバスト性を高めるため,勾配に基づく雑音増大に伴う不確実性をシミュレートする勾配ロバスト損失を提案する。
広範な実験により、SAMとその下流モデルに対する普遍的メタ初期化および勾配頑健な敵攻撃(UMI-GRAT)の有効性が示された。
コードはhttps://github.com/xiasong0501/GRATで入手できる。
関連論文リスト
- Enhancing Adversarial Transferability with Adversarial Weight Tuning [36.09966860069978]
敵対的な例(AE)は、人間の観察者に対して良心を抱きながらモデルを誤解させた。
AWTは、勾配に基づく攻撃法とモデルに基づく攻撃法を組み合わせて、AEの転送可能性を高めるデータフリーチューニング手法である。
論文 参考訳(メタデータ) (2024-08-18T13:31:26Z) - Model Stealing Attack against Graph Classification with Authenticity, Uncertainty and Diversity [80.16488817177182]
GNNは、クエリ許可を通じてターゲットモデルを複製するための悪行であるモデル盗難攻撃に対して脆弱である。
異なるシナリオに対応するために,3つのモデルステルス攻撃を導入する。
論文 参考訳(メタデータ) (2023-12-18T05:42:31Z) - Improving Adversarial Transferability by Stable Diffusion [36.97548018603747]
敵対的な例は 良心サンプルに 知覚不能な摂動を導入 予測を欺く
ディープニューラルネットワーク(Deep Neural Network, DNN)は、良性サンプルに知覚不能な摂動を導入し、予測を誤認する敵の例に影響を受けやすい。
本稿では,SDAM(Stable Diffusion Attack Method)と呼ばれる新しい攻撃手法を提案する。
論文 参考訳(メタデータ) (2023-11-18T09:10:07Z) - Introducing Foundation Models as Surrogate Models: Advancing Towards
More Practical Adversarial Attacks [15.882687207499373]
箱なしの敵攻撃は、AIシステムにとってより実用的で難しいものになりつつある。
本稿では,サロゲートモデルとして基礎モデルを導入することにより,逆攻撃を下流タスクとして再放送する。
論文 参考訳(メタデータ) (2023-07-13T08:10:48Z) - LEAT: Towards Robust Deepfake Disruption in Real-World Scenarios via
Latent Ensemble Attack [11.764601181046496]
生成モデルによって作成された悪意のある視覚コンテンツであるディープフェイクは、社会にますます有害な脅威をもたらす。
近年のディープフェイクの損傷を積極的に軽減するために, 逆方向の摂動を用いてディープフェイクモデルの出力を妨害する研究が進められている。
そこで本研究では,Latent Ensemble ATtack (LEAT) と呼ばれる簡易かつ効果的なディスラプション手法を提案する。
論文 参考訳(メタデータ) (2023-07-04T07:00:37Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z) - Learning to Learn Transferable Attack [77.67399621530052]
転送逆行攻撃は非自明なブラックボックス逆行攻撃であり、サロゲートモデル上で敵の摂動を発生させ、そのような摂動を被害者モデルに適用することを目的としている。
本研究では,データとモデル拡張の両方から学習することで,敵の摂動をより一般化する学習可能な攻撃学習法(LLTA)を提案する。
提案手法の有効性を実証し, 現状の手法と比較して, 12.85%のトランスファー攻撃の成功率で検証した。
論文 参考訳(メタデータ) (2021-12-10T07:24:21Z) - Boosting Black-Box Attack with Partially Transferred Conditional
Adversarial Distribution [83.02632136860976]
深層ニューラルネットワーク(DNN)に対するブラックボックス攻撃の研究
我々は, 代理バイアスに対して頑健な, 対向移動可能性の新たなメカニズムを開発する。
ベンチマークデータセットの実験と実世界のAPIに対する攻撃は、提案手法の優れた攻撃性能を示す。
論文 参考訳(メタデータ) (2020-06-15T16:45:27Z) - Adversarial Distributional Training for Robust Deep Learning [53.300984501078126]
逆行訓練(AT)は、逆行例によるトレーニングデータを増やすことにより、モデルロバスト性を改善する最も効果的な手法の一つである。
既存のAT手法の多くは、敵の例を作らせるために特定の攻撃を採用しており、他の目に見えない攻撃に対する信頼性の低い堅牢性につながっている。
本稿では,ロバストモデル学習のための新しいフレームワークであるADTを紹介する。
論文 参考訳(メタデータ) (2020-02-14T12:36:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。