Equivariant Blurring Diffusion for Hierarchical Molecular Conformer Generation
- URL: http://arxiv.org/abs/2410.20255v1
- Date: Sat, 26 Oct 2024 19:17:31 GMT
- Title: Equivariant Blurring Diffusion for Hierarchical Molecular Conformer Generation
- Authors: Jiwoong Park, Yang Shen,
- Abstract summary: We introduce a novel generative model termed Equivariant Blurring Diffusion (EBD)
EBD defines a forward process that moves towards the fragment-level coarse-grained structure by blurring the fine atomic details of conformers.
We demonstrate the effectiveness of EBD by geometric and chemical comparison to state-of-the-art denoising diffusion models on a benchmark of drug-like molecules.
- Score: 18.394348744611662
- License:
- Abstract: How can diffusion models process 3D geometries in a coarse-to-fine manner, akin to our multiscale view of the world? In this paper, we address the question by focusing on a fundamental biochemical problem of generating 3D molecular conformers conditioned on molecular graphs in a multiscale manner. Our approach consists of two hierarchical stages: i) generation of coarse-grained fragment-level 3D structure from the molecular graph, and ii) generation of fine atomic details from the coarse-grained approximated structure while allowing the latter to be adjusted simultaneously. For the challenging second stage, which demands preserving coarse-grained information while ensuring SE(3) equivariance, we introduce a novel generative model termed Equivariant Blurring Diffusion (EBD), which defines a forward process that moves towards the fragment-level coarse-grained structure by blurring the fine atomic details of conformers, and a reverse process that performs the opposite operation using equivariant networks. We demonstrate the effectiveness of EBD by geometric and chemical comparison to state-of-the-art denoising diffusion models on a benchmark of drug-like molecules. Ablation studies draw insights on the design of EBD by thoroughly analyzing its architecture, which includes the design of the loss function and the data corruption process. Codes are released at https://github.com/Shen-Lab/EBD .
Related papers
- Conditional Synthesis of 3D Molecules with Time Correction Sampler [58.0834973489875]
Time-Aware Conditional Synthesis (TACS) is a novel approach to conditional generation on diffusion models.
It integrates adaptively controlled plug-and-play "online" guidance into a diffusion model, driving samples toward the desired properties.
arXiv Detail & Related papers (2024-11-01T12:59:25Z) - Coarse-to-Fine: a Hierarchical Diffusion Model for Molecule Generation
in 3D [38.181969810488916]
Existing methods usually generate molecules in atom resolution and ignore intrinsic local structures such as rings.
Fragment-based molecule generation is a promising strategy, however, it is non-trivial to be adapted for 3D non-autoregressive generations.
In this paper, we propose a coarse-to-fine strategy to tackle this problem, in which a Hierarchical Diffusion-based model (i.e.HierDiff) is proposed to preserve the validity of local segments without relying on autore modeling.
arXiv Detail & Related papers (2023-05-05T13:08:38Z) - MUDiff: Unified Diffusion for Complete Molecule Generation [104.7021929437504]
We present a new model for generating a comprehensive representation of molecules, including atom features, 2D discrete molecule structures, and 3D continuous molecule coordinates.
We propose a novel graph transformer architecture to denoise the diffusion process.
Our model is a promising approach for designing stable and diverse molecules and can be applied to a wide range of tasks in molecular modeling.
arXiv Detail & Related papers (2023-04-28T04:25:57Z) - 3D Equivariant Diffusion for Target-Aware Molecule Generation and
Affinity Prediction [9.67574543046801]
The inclusion of 3D structures during targeted drug design shows superior performance to other target-free models.
We develop a 3D equivariant diffusion model to solve the above challenges.
Our model could generate molecules with more realistic 3D structures and better affinities towards the protein targets, and improve binding affinity ranking and prediction without retraining.
arXiv Detail & Related papers (2023-03-06T23:01:43Z) - Heterogeneous reconstruction of deformable atomic models in Cryo-EM [30.864688165021054]
We describe a heterogeneous reconstruction method based on an atomistic representation whose deformation is reduced to a handful of collective motions.
We show for each distribution that our approach is able to recapitulate the intermediate atomic models with atomic-level accuracy.
arXiv Detail & Related papers (2022-09-29T22:35:35Z) - Equivariant Diffusion for Molecule Generation in 3D [74.289191525633]
This work introduces a diffusion model for molecule computation generation in 3D that is equivariant to Euclidean transformations.
Experimentally, the proposed method significantly outperforms previous 3D molecular generative methods regarding the quality of generated samples and efficiency at training time.
arXiv Detail & Related papers (2022-03-31T12:52:25Z) - GeoDiff: a Geometric Diffusion Model for Molecular Conformation
Generation [102.85440102147267]
We propose a novel generative model named GeoDiff for molecular conformation prediction.
We show that GeoDiff is superior or comparable to existing state-of-the-art approaches.
arXiv Detail & Related papers (2022-03-06T09:47:01Z) - GeoMol: Torsional Geometric Generation of Molecular 3D Conformer
Ensembles [60.12186997181117]
Prediction of a molecule's 3D conformer ensemble from the molecular graph holds a key role in areas of cheminformatics and drug discovery.
Existing generative models have several drawbacks including lack of modeling important molecular geometry elements.
We propose GeoMol, an end-to-end, non-autoregressive and SE(3)-invariant machine learning approach to generate 3D conformers.
arXiv Detail & Related papers (2021-06-08T14:17:59Z) - An End-to-End Framework for Molecular Conformation Generation via
Bilevel Programming [71.82571553927619]
We propose an end-to-end solution for molecular conformation prediction called ConfVAE.
Specifically, the molecular graph is first encoded in a latent space, and then the 3D structures are generated by solving a principled bilevel optimization program.
arXiv Detail & Related papers (2021-05-15T15:22:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.