AI-Driven Cyber Threat Intelligence Automation
- URL: http://arxiv.org/abs/2410.20287v1
- Date: Sat, 26 Oct 2024 22:56:53 GMT
- Title: AI-Driven Cyber Threat Intelligence Automation
- Authors: Shrit Shah, Fatemeh Khoda Parast,
- Abstract summary: This study introduces an innovative approach to automating Cyber Threat Intelligence (CTI) processes in industrial environments.
By employing the capabilities of GPT-4o and advanced one-shot fine-tuning techniques for large language models, our research delivers a novel CTI automation solution.
- Score: 0.0
- License:
- Abstract: This study introduces an innovative approach to automating Cyber Threat Intelligence (CTI) processes in industrial environments by leveraging Microsoft's AI-powered security technologies. Historically, CTI has heavily relied on manual methods for collecting, analyzing, and interpreting data from various sources such as threat feeds. This study introduces an innovative approach to automating CTI processes in industrial environments by leveraging Microsoft's AI-powered security technologies. Historically, CTI has heavily relied on manual methods for collecting, analyzing, and interpreting data from various sources such as threat feeds, security logs, and dark web forums -- a process prone to inefficiencies, especially when rapid information dissemination is critical. By employing the capabilities of GPT-4o and advanced one-shot fine-tuning techniques for large language models, our research delivers a novel CTI automation solution. The outcome of the proposed architecture is a reduction in manual effort while maintaining precision in generating final CTI reports. This research highlights the transformative potential of AI-driven technologies to enhance both the speed and accuracy of CTI and reduce expert demands, offering a vital advantage in today's dynamic threat landscape.
Related papers
- CTINEXUS: Leveraging Optimized LLM In-Context Learning for Constructing Cybersecurity Knowledge Graphs Under Data Scarcity [49.657358248788945]
Textual descriptions in cyber threat intelligence (CTI) reports are rich sources of knowledge about cyber threats.
Current CTI extraction methods lack flexibility and generalizability, often resulting in inaccurate and incomplete knowledge extraction.
We propose CTINexus, a novel framework leveraging optimized in-context learning (ICL) of large language models.
arXiv Detail & Related papers (2024-10-28T14:18:32Z) - Actionable Cyber Threat Intelligence using Knowledge Graphs and Large Language Models [0.8192907805418583]
Microsoft, Trend Micro, and CrowdStrike are using generative AI to facilitate CTI extraction.
This paper addresses the challenge of automating the extraction of actionable CTI using advancements in Large Language Models (LLMs) and Knowledge Graphs (KGs)
Our methodology evaluates techniques such as prompt engineering, the guidance framework, and fine-tuning to optimize information extraction and structuring.
Experimental results demonstrate the effectiveness of our approach in extracting relevant information, with guidance and fine-tuning showing superior performance over prompt engineering.
arXiv Detail & Related papers (2024-06-30T13:02:03Z) - DETECTA 2.0: Research into non-intrusive methodologies supported by Industry 4.0 enabling technologies for predictive and cyber-secure maintenance in SMEs [0.19972837513980318]
The DETECTA 2.0 project harmonizes real-time anomaly detection, sophisticated analytics, and predictive forecasting capabilities.
At the core lies a Digital Twin interface, providing intuitive real-time visualizations of machine states and detected anomalies.
The predictive engine uses advanced time series algorithms like N-HiTS to forecast future machine utilization trends.
arXiv Detail & Related papers (2024-05-24T08:38:38Z) - Towards an AI-Enhanced Cyber Threat Intelligence Processing Pipeline [0.0]
This paper explores the potential of integrating Artificial Intelligence (AI) into Cyber Threat Intelligence (CTI)
We provide a blueprint of an AI-enhanced CTI processing pipeline, and detail its components and functionalities.
We discuss ethical dilemmas, potential biases, and the imperative for transparency in AI-driven decisions.
arXiv Detail & Related papers (2024-03-05T19:03:56Z) - NLP-Based Techniques for Cyber Threat Intelligence [13.958337678497163]
Survey paper provides a comprehensive overview of NLP-based techniques applied in the context of threat intelligence.
It begins by describing the foundational definitions and principles of CTI as a major tool for safeguarding digital assets.
It then undertakes a thorough examination of NLP-based techniques for CTI data crawling from Web sources, CTI data analysis, Relation Extraction from cybersecurity data, CTI sharing and collaboration, and security threats of CTI.
arXiv Detail & Related papers (2023-11-15T09:23:33Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
Artificial Intelligence for IT operations (AIOps) aims to combine the power of AI with the big data generated by IT Operations processes.
We discuss in depth the key types of data emitted by IT Operations activities, the scale and challenges in analyzing them, and where they can be helpful.
We categorize the key AIOps tasks as - incident detection, failure prediction, root cause analysis and automated actions.
arXiv Detail & Related papers (2023-04-10T15:38:12Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
We introduce highlighted robustness challenges in the AI lifecycle and motivate AI maintenance by making analogies to car maintenance.
We propose an AI model inspection framework to detect and mitigate robustness risks.
Our proposal for AI maintenance facilitates robustness assessment, status tracking, risk scanning, model hardening, and regulation throughout the AI lifecycle.
arXiv Detail & Related papers (2023-01-08T15:02:38Z) - ThreatKG: An AI-Powered System for Automated Open-Source Cyber Threat Intelligence Gathering and Management [65.0114141380651]
ThreatKG is an automated system for OSCTI gathering and management.
It efficiently collects a large number of OSCTI reports from multiple sources.
It uses specialized AI-based techniques to extract high-quality knowledge about various threat entities.
arXiv Detail & Related papers (2022-12-20T16:13:59Z) - Towards Automated Classification of Attackers' TTPs by combining NLP
with ML Techniques [77.34726150561087]
We evaluate and compare different Natural Language Processing (NLP) and machine learning techniques used for security information extraction in research.
Based on our investigations we propose a data processing pipeline that automatically classifies unstructured text according to attackers' tactics and techniques.
arXiv Detail & Related papers (2022-07-18T09:59:21Z) - A System for Automated Open-Source Threat Intelligence Gathering and
Management [53.65687495231605]
SecurityKG is a system for automated OSCTI gathering and management.
It uses a combination of AI and NLP techniques to extract high-fidelity knowledge about threat behaviors.
arXiv Detail & Related papers (2021-01-19T18:31:35Z) - Automated Retrieval of ATT&CK Tactics and Techniques for Cyber Threat
Reports [5.789368942487406]
We evaluate several classification approaches to automatically retrieve Tactics, Techniques and Procedures from unstructured text.
We present rcATT, a tool built on top of our findings and freely distributed to the security community to support cyber threat report automated analysis.
arXiv Detail & Related papers (2020-04-29T16:45:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.