論文の概要: Maintaining Informative Coherence: Migrating Hallucinations in Large Language Models via Absorbing Markov Chains
- arxiv url: http://arxiv.org/abs/2410.20340v1
- Date: Sun, 27 Oct 2024 04:51:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:18:20.381731
- Title: Maintaining Informative Coherence: Migrating Hallucinations in Large Language Models via Absorbing Markov Chains
- Title(参考訳): インフォーマティブ・コヒーレンスを維持する:マルコフ連鎖の吸収による大規模言語モデルにおける幻覚の緩和
- Authors: Jiemin Wu, Songning Lai, Ruiqiang Xiao, Tianlang Xue, Jiayu Yang, Yutao Yue,
- Abstract要約: 大規模言語モデル(LLM)は、テキスト生成、翻訳、要約のための強力なツールである。
LLMは、文脈情報の忠実さとコヒーレンスを維持するのに失敗する幻覚症状に悩まされることが多い。
本稿では,マルコフ連鎖を吸収し,文脈情報の重要性を定量化する新しい復号手法を提案する。
- 参考スコア(独自算出の注目度): 6.920249042435973
- License:
- Abstract: Large Language Models (LLMs) are powerful tools for text generation, translation, and summarization, but they often suffer from hallucinations-instances where they fail to maintain the fidelity and coherence of contextual information during decoding, sometimes overlooking critical details due to their sampling strategies and inherent biases from training data and fine-tuning discrepancies. These hallucinations can propagate through the web, affecting the trustworthiness of information disseminated online. To address this issue, we propose a novel decoding strategy that leverages absorbing Markov chains to quantify the significance of contextual information and measure the extent of information loss during generation. By considering all possible paths from the first to the last token, our approach enhances the reliability of model outputs without requiring additional training or external data. Evaluations on datasets including TruthfulQA, FACTOR, and HaluEval highlight the superior performance of our method in mitigating hallucinations, underscoring the necessity of ensuring accurate information flow in web-based applications.
- Abstract(参考訳): 大規模言語モデル(LLM)は、テキスト生成、翻訳、要約のための強力なツールであるが、復号時に文脈情報の忠実さと一貫性を維持できない幻覚現象に悩まされることが多い。
これらの幻覚はウェブを通じて伝播し、オンラインで拡散する情報の信頼性に影響を与える。
この問題に対処するために,マルコフ連鎖の吸収を利用してコンテキスト情報の価値を定量化し,生成時の情報損失の程度を測定する新しい復号手法を提案する。
最初のトークンから最後のトークンまでの可能なすべてのパスを考慮することで、我々のアプローチは、追加のトレーニングや外部データを必要としないモデル出力の信頼性を高めることができる。
TruthfulQA, FACTOR, HaluEvalなどのデータセットの評価は, 幻覚を緩和する手法の優れた性能を強調し, ウェブベースアプリケーションにおける正確な情報フローの確保の必要性を強調している。
関連論文リスト
- Beyond Fine-Tuning: Effective Strategies for Mitigating Hallucinations in Large Language Models for Data Analytics [0.0]
大きな言語モデル(LLM)は自然言語処理においてますます重要になってきており、自然言語クエリによる高度なデータ分析を可能にしている。
これらのモデルはしばしば、重要なデータ駆動意思決定において信頼性を損なう「幻覚」や「偽情報」を生成する。
本研究は,LLMにおける幻覚の緩和,特にデータ分析の文脈において焦点をあてる。
論文 参考訳(メタデータ) (2024-10-26T00:45:42Z) - Detecting, Explaining, and Mitigating Memorization in Diffusion Models [49.438362005962375]
そこで本研究では,テキスト条件予測の大きさを検査することで,暗黙のプロンプトを検出する方法を提案する。
提案手法はサンプリングアルゴリズムを中断することなくシームレスに統合し,第1世代でも高い精度を実現する。
検出戦略に基づいて,個々の単語やトークンの記憶への寄与を示す説明可能なアプローチを提示する。
論文 参考訳(メタデータ) (2024-07-31T16:13:29Z) - VALOR-EVAL: Holistic Coverage and Faithfulness Evaluation of Large Vision-Language Models [57.43276586087863]
LVLM(Large Vision-Language Models)は幻覚に悩まされ、このモデルでは可聴音を発生させるが、実際には誤出力を発生させる。
既存のベンチマークはスコープに限られており、主にオブジェクト幻覚に焦点を当てている。
対象,属性,関係を多次元のベンチマークで表現し,連想バイアスに基づいて画像を選択する。
論文 参考訳(メタデータ) (2024-04-22T04:49:22Z) - Debiasing Multimodal Large Language Models [61.6896704217147]
LVLM(Large Vision-Language Models)は、コンピュータビジョンや自然言語処理において欠かせないツールとなっている。
本研究は,入力画像に先行するLarge Language Models (LLM) の影響を主に受け,生成したコンテンツに有意なバイアスが生じることを示す。
これらのバイアスを是正し、視覚情報に対するモデルの焦点をリダイレクトするために、我々は2つの単純で訓練のない戦略を導入する。
論文 参考訳(メタデータ) (2024-03-08T12:35:07Z) - Capturing Pertinent Symbolic Features for Enhanced Content-Based
Misinformation Detection [0.0]
誤解を招く内容の検出は、言語的・ドメイン的多様性の極端さから、大きなハードルとなる。
本稿では,この現象を特徴付ける言語特性と,最も一般的な誤情報データセットの表現方法について分析する。
ニューラルネットワークモデルと組み合わせた関連する記号的知識の適切な利用は、誤解を招くコンテンツを検出するのに有効であることを示す。
論文 参考訳(メタデータ) (2024-01-29T16:42:34Z) - Blending Reward Functions via Few Expert Demonstrations for Faithful and
Accurate Knowledge-Grounded Dialogue Generation [22.38338205905379]
我々は、新しい報酬関数を導入することで上記の課題を克服するために強化学習アルゴリズムを活用する。
我々の報奨関数は、精度測定値と忠実度測定値を組み合わせて、生成された応答のバランスの取れた品質判定を提供する。
論文 参考訳(メタデータ) (2023-11-02T02:42:41Z) - Meta-Learning Online Adaptation of Language Models [88.8947656843812]
大規模言語モデルは、そのパラメータにおける驚くほど広い世界の知識を符号化する。
しかし、静的言語モデルの知識は時代遅れになり、モデルの効果的な「シェルフライフ」が制限される。
論文 参考訳(メタデータ) (2023-05-24T11:56:20Z) - Mutual Information Alleviates Hallucinations in Abstractive
Summarization [73.48162198041884]
モデルが生成中の幻覚コンテンツにより多くの確率を割り当てる可能性が著しく高いという単純な基準を見いだす。
この発見は幻覚の潜在的な説明を提供する:モデルは、継続について不確実な場合には、高い限界確率のテキストを好むことをデフォルトとする。
そこで本研究では,ターゲットトークンの正当性ではなく,ソースとターゲットトークンのポイントワイドな相互情報の最適化に切り替える復号手法を提案する。
論文 参考訳(メタデータ) (2022-10-24T13:30:54Z) - Sorting through the noise: Testing robustness of information processing
in pre-trained language models [5.371816551086117]
本稿では,意図しないコンテンツに関連性のあるコンテキスト情報を配置するモデルの頑健さについて検討する。
モデルが従来の文脈から関連する事実を理解・適用するために単純な文脈に現れるが、注意散らしながら無関係なコンテンツの存在は、混乱したモデル予測に明らかな影響を与えている。
論文 参考訳(メタデータ) (2021-09-25T16:02:23Z) - Detecting Hallucinated Content in Conditional Neural Sequence Generation [165.68948078624499]
出力シーケンスの各トークンが(入力に含まれていない)幻覚化されているかどうかを予測するタスクを提案する。
また、合成データに微調整された事前学習言語モデルを用いて幻覚を検出する方法についても紹介する。
論文 参考訳(メタデータ) (2020-11-05T00:18:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。