Inevitable Trade-off between Watermark Strength and Speculative Sampling Efficiency for Language Models
- URL: http://arxiv.org/abs/2410.20418v1
- Date: Sun, 27 Oct 2024 12:00:19 GMT
- Title: Inevitable Trade-off between Watermark Strength and Speculative Sampling Efficiency for Language Models
- Authors: Zhengmian Hu, Heng Huang,
- Abstract summary: We show that it is impossible to simultaneously maintain the highest watermark strength and the highest sampling efficiency.
We propose two methods that maintain either the sampling efficiency or the watermark strength, but not both.
Our work provides a rigorous theoretical foundation for understanding the inherent trade-off between watermark strength and sampling efficiency.
- Score: 63.450843788680196
- License:
- Abstract: Large language models are probabilistic models, and the process of generating content is essentially sampling from the output distribution of the language model. Existing watermarking techniques inject watermarks into the generated content without altering the output quality. On the other hand, existing acceleration techniques, specifically speculative sampling, leverage a draft model to speed up the sampling process while preserving the output distribution. However, there is no known method to simultaneously accelerate the sampling process and inject watermarks into the generated content. In this paper, we investigate this direction and find that the integration of watermarking and acceleration is non-trivial. We prove a no-go theorem, which states that it is impossible to simultaneously maintain the highest watermark strength and the highest sampling efficiency. Furthermore, we propose two methods that maintain either the sampling efficiency or the watermark strength, but not both. Our work provides a rigorous theoretical foundation for understanding the inherent trade-off between watermark strength and sampling efficiency in accelerating the generation of watermarked tokens for large language models. We also conduct numerical experiments to validate our theoretical findings and demonstrate the effectiveness of the proposed methods.
Related papers
- Embedding Watermarks in Diffusion Process for Model Intellectual Property Protection [16.36712147596369]
We introduce a novel watermarking framework by embedding the watermark into the whole diffusion process.
Detailed theoretical analysis and experimental validation demonstrate the effectiveness of our proposed method.
arXiv Detail & Related papers (2024-10-29T18:27:10Z) - Watermarking Language Models with Error Correcting Codes [41.21656847672627]
We propose a watermarking framework that encodes statistical signals through an error correcting code.
Our method, termed robust binary code (RBC) watermark, introduces no distortion compared to the original probability distribution.
Our empirical findings suggest our watermark is fast, powerful, and robust, comparing favorably to the state-of-the-art.
arXiv Detail & Related papers (2024-06-12T05:13:09Z) - Gaussian Shading: Provable Performance-Lossless Image Watermarking for Diffusion Models [71.13610023354967]
Copyright protection and inappropriate content generation pose challenges for the practical implementation of diffusion models.
We propose a diffusion model watermarking technique that is both performance-lossless and training-free.
arXiv Detail & Related papers (2024-04-07T13:30:10Z) - Language Rectified Flow: Advancing Diffusion Language Generation with Probabilistic Flows [53.31856123113228]
This paper proposes Language Rectified Flow (ours)
Our method is based on the reformulation of the standard probabilistic flow models.
Experiments and ablation studies demonstrate that our method can be general, effective, and beneficial for many NLP tasks.
arXiv Detail & Related papers (2024-03-25T17:58:22Z) - Duwak: Dual Watermarks in Large Language Models [49.00264962860555]
We propose, Duwak, to enhance the efficiency and quality of watermarking by embedding dual secret patterns in both token probability distribution and sampling schemes.
We evaluate Duwak extensively on Llama2, against four state-of-the-art watermarking techniques and combinations of them.
arXiv Detail & Related papers (2024-03-12T16:25:38Z) - Improving the Generation Quality of Watermarked Large Language Models
via Word Importance Scoring [81.62249424226084]
Token-level watermarking inserts watermarks in the generated texts by altering the token probability distributions.
This watermarking algorithm alters the logits during generation, which can lead to a downgraded text quality.
We propose to improve the quality of texts generated by a watermarked language model by Watermarking with Importance Scoring (WIS)
arXiv Detail & Related papers (2023-11-16T08:36:00Z) - Unbiased Watermark for Large Language Models [67.43415395591221]
This study examines how significantly watermarks impact the quality of model-generated outputs.
It is possible to integrate watermarks without affecting the output probability distribution.
The presence of watermarks does not compromise the performance of the model in downstream tasks.
arXiv Detail & Related papers (2023-09-22T12:46:38Z) - Three Bricks to Consolidate Watermarks for Large Language Models [13.559357913735122]
This research consolidates watermarks for large language models based on three theoretical and empirical considerations.
First, we introduce new statistical tests that offer robust theoretical guarantees which remain valid even at low false-positive rates.
Second, we compare the effectiveness of watermarks using classical benchmarks in the field of natural language processing, gaining insights into their real-world applicability.
arXiv Detail & Related papers (2023-07-26T17:56:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.