YourSkatingCoach: A Figure Skating Video Benchmark for Fine-Grained Element Analysis
- URL: http://arxiv.org/abs/2410.20427v2
- Date: Wed, 30 Oct 2024 05:51:08 GMT
- Title: YourSkatingCoach: A Figure Skating Video Benchmark for Fine-Grained Element Analysis
- Authors: Wei-Yi Chen, Yi-Ling Lin, Yu-An Su, Wei-Hsin Yeh, Lun-Wei Ku,
- Abstract summary: dataset contains 454 videos of jump elements, the detected skater skeletons in each video, along with the gold labels of the start and ending frames of each jump, together as a video benchmark for figure skating.
We propose air time detection, a novel motion analysis task, the goal of which is to accurately detect the duration of the air time of a jump.
To verify the generalizability of the fine-grained labels, we apply the same process to other sports as cross-sports tasks but for coarse-grained task action classification.
- Score: 10.444961818248624
- License:
- Abstract: Combining sports and machine learning involves leveraging ML algorithms and techniques to extract insight from sports-related data such as player statistics, game footage, and other relevant information. However, datasets related to figure skating in the literature focus primarily on element classification and are currently unavailable or exhibit only limited access, which greatly raise the entry barrier to developing visual sports technology for it. Moreover, when using such data to help athletes improve their skills, we find they are very coarse-grained: they work for learning what an element is, but they are poorly suited to learning whether the element is good or bad. Here we propose air time detection, a novel motion analysis task, the goal of which is to accurately detect the duration of the air time of a jump. We present YourSkatingCoach, a large, novel figure skating dataset which contains 454 videos of jump elements, the detected skater skeletons in each video, along with the gold labels of the start and ending frames of each jump, together as a video benchmark for figure skating. In addition, although this type of task is often viewed as classification, we cast it as a sequential labeling problem and propose a Transformer-based model to calculate the duration. Experimental results show that the proposed model yields a favorable results for a strong baseline. To further verify the generalizability of the fine-grained labels, we apply the same process to other sports as cross-sports tasks but for coarse-grained task action classification. Here we fine-tune the classification to demonstrate that figure skating, as it contains the essential body movements, constitutes a strong foundation for adaptation to other sports.
Related papers
- Deep learning for action spotting in association football videos [64.10841325879996]
The SoccerNet initiative organizes yearly challenges, during which participants from all around the world compete to achieve state-of-the-art performances.
This paper traces the history of action spotting in sports, from the creation of the task back in 2018, to the role it plays today in research and the sports industry.
arXiv Detail & Related papers (2024-10-02T07:56:15Z) - Benchmarking Badminton Action Recognition with a New Fine-Grained Dataset [16.407837909069073]
We introduce the VideoBadminton dataset derived from high-quality badminton footage.
The introduction of VideoBadminton could not only serve for badminton action recognition but also provide a dataset for recognizing fine-grained actions.
arXiv Detail & Related papers (2024-03-19T02:52:06Z) - Towards Active Learning for Action Spotting in Association Football
Videos [59.84375958757395]
Analyzing football videos is challenging and requires identifying subtle and diverse-temporal patterns.
Current algorithms face significant challenges when learning from limited annotated data.
We propose an active learning framework that selects the most informative video samples to be annotated next.
arXiv Detail & Related papers (2023-04-09T11:50:41Z) - Sport Task: Fine Grained Action Detection and Classification of Table
Tennis Strokes from Videos for MediaEval 2022 [0.9894420655516565]
This task aims at detecting and classifying subtle movements from sport videos.
We focus on recordings of table tennis matches.
Since 2021, the task also provides a stroke detection challenge from unannotated, untrimmed videos.
arXiv Detail & Related papers (2023-01-31T12:03:59Z) - A Graph-Based Method for Soccer Action Spotting Using Unsupervised
Player Classification [75.93186954061943]
Action spotting involves understanding the dynamics of the game, the complexity of events, and the variation of video sequences.
In this work, we focus on the former by (a) identifying and representing the players, referees, and goalkeepers as nodes in a graph, and by (b) modeling their temporal interactions as sequences of graphs.
For the player identification task, our method obtains an overall performance of 57.83% average-mAP by combining it with other modalities.
arXiv Detail & Related papers (2022-11-22T15:23:53Z) - A Survey on Video Action Recognition in Sports: Datasets, Methods and
Applications [60.3327085463545]
We present a survey on video action recognition for sports analytics.
We introduce more than ten types of sports, including team sports, such as football, basketball, volleyball, hockey and individual sports, such as figure skating, gymnastics, table tennis, diving and badminton.
We develop a toolbox using PaddlePaddle, which supports football, basketball, table tennis and figure skating action recognition.
arXiv Detail & Related papers (2022-06-02T13:19:36Z) - Sports Video: Fine-Grained Action Detection and Classification of Table
Tennis Strokes from Videos for MediaEval 2021 [0.0]
This task tackles fine-grained action detection and classification from videos.
The focus is on recordings of table tennis games.
This work aims at creating tools for sports coaches and players in order to analyze sports performance.
arXiv Detail & Related papers (2021-12-16T10:17:59Z) - Hybrid Dynamic-static Context-aware Attention Network for Action
Assessment in Long Videos [96.45804577283563]
We present a novel hybrid dynAmic-static Context-aware attenTION NETwork (ACTION-NET) for action assessment in long videos.
We learn the video dynamic information but also focus on the static postures of the detected athletes in specific frames.
We combine the features of the two streams to regress the final video score, supervised by ground-truth scores given by experts.
arXiv Detail & Related papers (2020-08-13T15:51:42Z) - FineGym: A Hierarchical Video Dataset for Fine-grained Action
Understanding [118.32912239230272]
FineGym is a new action recognition dataset built on top of gymnastic videos.
It provides temporal annotations at both action and sub-action levels with a three-level semantic hierarchy.
This new level of granularity presents significant challenges for action recognition.
arXiv Detail & Related papers (2020-04-14T17:55:21Z) - FSD-10: A Dataset for Competitive Sports Content Analysis [29.62110021022271]
Figure Skating dataset (FSD-10) is designed to have a large collection of finegrained actions.
Each clip is at a rate of 30 frames per second with resolution 1080 $times$ 720.
We evaluate state-of-the-art action recognition methods on FSD-10.
arXiv Detail & Related papers (2020-02-09T08:04:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.