論文の概要: MedGo: A Chinese Medical Large Language Model
- arxiv url: http://arxiv.org/abs/2410.20428v1
- Date: Sun, 27 Oct 2024 12:52:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:18:18.728033
- Title: MedGo: A Chinese Medical Large Language Model
- Title(参考訳): MedGo:中国の医療用大規模言語モデル
- Authors: Haitao Zhang, Bo An,
- Abstract要約: 本稿では,中国の医学大言語モデルであるMedGoについて述べる。
MedGoは、高品質な教師なし医療データ、教師付きデータ、嗜好アライメントデータを組み合わせて訓練された。
その結果、MedGoは様々な中国の医療情報処理タスクで有望なパフォーマンスを達成できた。
- 参考スコア(独自算出の注目度): 20.770607085079195
- License:
- Abstract: Large models are a hot research topic in the field of artificial intelligence. Leveraging their generative capabilities has the potential to enhance the level and quality of medical services. In response to the limitations of current large language models, which often struggle with accuracy and have narrow capabilities in medical applications, this paper presents a Chinese medical large language model, MedGo. MedGo was trained using a combination of high quality unsupervised medical data, supervised data, and preference alignment data, aimed at enhancing both its versatility and precision in medical tasks. The model was evaluated through the public CBLUE benchmark and a manually constructed dataset ClinicalQA. The results demonstrate that MedGo achieved promising performance across various Chinese medical information processing tasks, achieved the first place in the CBLUE evaluation. Additionally, on our constructed dataset ClinicalQA, MedGo outperformed its base model Qwen2, highlighting its potential to improve both automated medical question answering and clinical decision support. These experimental results demonstrate that MedGo possesses strong information processing capabilities in the medical field. At present, we have successfully deployed MedGo at Shanghai East Hospital.
- Abstract(参考訳): 大規模モデルは人工知能の分野でホットな研究トピックである。
生成能力を活用すれば、医療サービスのレベルと品質が向上する可能性がある。
本報告では, 医学的応用において, 精度に苦しむことの多い現在の大言語モデルの限界に対処し, 漢方医学的大言語モデルであるMedGoを提案する。
MedGoは、高品質な教師なし医療データ、教師付きデータ、および優先順位付けデータの組み合わせを用いて訓練され、医療タスクの汎用性と精度の向上を目的としている。
このモデルは、CBLUEベンチマークと手動で構築されたデータセット臨床QAを用いて評価された。
その結果,MedGoは中国の医療情報処理タスクにおいて有望なパフォーマンスを達成し,CBLUE評価において第一位となった。
さらに、構築したデータセットである臨床QAにおいて、MedGoはベースモデルであるQwen2よりも優れており、自動質問応答と臨床決定支援の両方を改善する可能性を強調した。
これらの実験結果から,MedGoは医療分野において強力な情報処理能力を有することが示された。
現在,上海東病院でMedGoの配備に成功している。
関連論文リスト
- MediTOD: An English Dialogue Dataset for Medical History Taking with Comprehensive Annotations [23.437292621092823]
本研究は,医学史研究のための英語における医師と患者との対話のデータセットであるMedictoDを紹介する。
医療領域に合わせたアンケートに基づくラベリング手法を考案する。
そして、医療専門家は高品質の包括的なアノテーションでデータセットを作成する。
論文 参考訳(メタデータ) (2024-10-18T06:38:22Z) - Towards Evaluating and Building Versatile Large Language Models for Medicine [57.49547766838095]
MedS-Benchは大規模言語モデル(LLM)の性能を臨床的に評価するためのベンチマークである。
MedS-Benchは、臨床報告の要約、治療勧告、診断、名前付きエンティティ認識、医療概念説明を含む、11のハイレベルな臨床タスクにまたがる。
MedS-Insは58の医療指向言語コーパスで構成され、112のタスクで1350万のサンプルを収集している。
論文 参考訳(メタデータ) (2024-08-22T17:01:34Z) - STLLaVA-Med: Self-Training Large Language and Vision Assistant for Medical Question-Answering [58.79671189792399]
STLLaVA-Medは、医療ビジュアルインストラクションデータを自動生成できるポリシーモデルを訓練するために設計されている。
STLLaVA-Medの有効性とデータ効率を3つの主要な医用視覚質問応答(VQA)ベンチマークで検証した。
論文 参考訳(メタデータ) (2024-06-28T15:01:23Z) - COGNET-MD, an evaluation framework and dataset for Large Language Model benchmarks in the medical domain [1.6752458252726457]
大規模言語モデル(LLM)は最先端の人工知能(AI)技術である。
医療領域認知ネットワーク評価ツールキット(COGNET-MD)について概説する。
医用テキストの解釈におけるLCMの能力を評価するのが困難であるスコアフレームを提案する。
論文 参考訳(メタデータ) (2024-05-17T16:31:56Z) - Capabilities of Gemini Models in Medicine [100.60391771032887]
医療専門のマルチモーダルモデルであるMed-Geminiを紹介する。
メドジェニーニを14の医療ベンチマークで評価し,その内10に新たな最先端(SoTA)性能を確立した。
我々の結果は、Med-Geminiの可能性を示唆する証拠を提供するが、より厳密な評価は実世界の展開に先立って重要である。
論文 参考訳(メタデータ) (2024-04-29T04:11:28Z) - MKA: A Scalable Medical Knowledge Assisted Mechanism for Generative
Models on Medical Conversation Tasks [3.9571320117430866]
このメカニズムは、一般的な神経生成モデルを支援し、医療会話タスクにおけるより良いパフォーマンスを達成することを目的としている。
医療固有の知識グラフは、6種類の医療関連情報を含むメカニズム内に設計されている。
評価結果は,本機構と組み合わせたモデルが,複数の自動評価指標において元の手法より優れていることを示す。
論文 参考訳(メタデータ) (2023-12-05T04:55:54Z) - ChiMed-GPT: A Chinese Medical Large Language Model with Full Training Regime and Better Alignment to Human Preferences [51.66185471742271]
我々は中国医学領域向けに明示的に設計されたベンチマークLSMであるChiMed-GPTを提案する。
ChiMed-GPTは、事前訓練、SFT、RLHFを含む総合的な訓練体制を実施。
我々は,ChiMed-GPTを患者識別に関する態度尺度の実行を促すことによって,潜在的なバイアスを分析した。
論文 参考訳(メタデータ) (2023-11-10T12:25:32Z) - ChatDoctor: A Medical Chat Model Fine-Tuned on a Large Language Model
Meta-AI (LLaMA) Using Medical Domain Knowledge [8.584905227066034]
本研究の目的は,医療アドバイスの精度を向上した専門言語モデルを作ることであった。
そこで我々は,10万件の患者-医師対話の大規模データセットを用いて,大規模言語モデルメタAI(LLaMA)の適応と精錬を行った。
実際の患者と医師の相互作用によるモデルの微調整により、患者のニーズを理解し、アドバイスを提供する能力は大幅に向上した。
論文 参考訳(メタデータ) (2023-03-24T15:29:16Z) - MedPerf: Open Benchmarking Platform for Medical Artificial Intelligence
using Federated Evaluation [110.31526448744096]
この可能性を解き明かすには、大規模な異種データに対して医療AIモデルの性能を測定する体系的な方法が必要である、と私たちは主張する。
MedPerfは、医療分野で機械学習をベンチマークするためのオープンフレームワークです。
論文 参考訳(メタデータ) (2021-09-29T18:09:41Z) - MedDG: An Entity-Centric Medical Consultation Dataset for Entity-Aware
Medical Dialogue Generation [86.38736781043109]
MedDGという12種類の消化器疾患に関連する大規模医用対話データセットを構築し,公開する。
MedDGデータセットに基づく2種類の医療対話タスクを提案する。1つは次のエンティティ予測であり、もう1つは医師の反応生成である。
実験結果から,プレトレイン言語モデルと他のベースラインは,両方のタスクに苦戦し,データセットの性能が劣ることがわかった。
論文 参考訳(メタデータ) (2020-10-15T03:34:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。