Vector Quantization Prompting for Continual Learning
- URL: http://arxiv.org/abs/2410.20444v1
- Date: Sun, 27 Oct 2024 13:43:53 GMT
- Title: Vector Quantization Prompting for Continual Learning
- Authors: Li Jiao, Qiuxia Lai, Yu Li, Qiang Xu,
- Abstract summary: Continual learning requires to overcome catastrophic forgetting when training a single model on a sequence of tasks.
Recent top-performing approaches are prompt-based methods that utilize a set of learnable parameters to encode task knowledge.
We propose VQ-Prompt, a prompt-based continual learning method that incorporates Vector Quantization into end-to-end training of a set of discrete prompts.
- Score: 23.26682439914273
- License:
- Abstract: Continual learning requires to overcome catastrophic forgetting when training a single model on a sequence of tasks. Recent top-performing approaches are prompt-based methods that utilize a set of learnable parameters (i.e., prompts) to encode task knowledge, from which appropriate ones are selected to guide the fixed pre-trained model in generating features tailored to a certain task. However, existing methods rely on predicting prompt identities for prompt selection, where the identity prediction process cannot be optimized with task loss. This limitation leads to sub-optimal prompt selection and inadequate adaptation of pre-trained features for a specific task. Previous efforts have tried to address this by directly generating prompts from input queries instead of selecting from a set of candidates. However, these prompts are continuous, which lack sufficient abstraction for task knowledge representation, making them less effective for continual learning. To address these challenges, we propose VQ-Prompt, a prompt-based continual learning method that incorporates Vector Quantization (VQ) into end-to-end training of a set of discrete prompts. In this way, VQ-Prompt can optimize the prompt selection process with task loss and meanwhile achieve effective abstraction of task knowledge for continual learning. Extensive experiments show that VQ-Prompt outperforms state-of-the-art continual learning methods across a variety of benchmarks under the challenging class-incremental setting. The code is available at \href{https://github.com/jiaolifengmi/VQ-Prompt}{this https URL}.
Related papers
Err
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.