CAPrompt: Cyclic Prompt Aggregation for Pre-Trained Model Based Class Incremental Learning
- URL: http://arxiv.org/abs/2412.08929v2
- Date: Mon, 16 Dec 2024 07:56:34 GMT
- Title: CAPrompt: Cyclic Prompt Aggregation for Pre-Trained Model Based Class Incremental Learning
- Authors: Qiwei Li, Jiahuan Zhou,
- Abstract summary: We propose a novel Cyclic Prompt Aggregation (CAPrompt) method to eliminate the dependency on task ID prediction.
Under concave conditions, the aggregated prompt achieves lower error compared to selecting a single task-specific prompt.
Our proposed CAPrompt outperforms state-of-the-art methods by 2%-3%.
- Score: 12.249938312431993
- License:
- Abstract: Recently, prompt tuning methods for pre-trained models have demonstrated promising performance in Class Incremental Learning (CIL). These methods typically involve learning task-specific prompts and predicting the task ID to select the appropriate prompts for inference. However, inaccurate task ID predictions can cause severe inconsistencies between the prompts used during training and inference, leading to knowledge forgetting and performance degradation. Additionally, existing prompt tuning methods rely solely on the pre-trained model to predict task IDs, without fully leveraging the knowledge embedded in the learned prompt parameters, resulting in inferior prediction performance. To address these issues, we propose a novel Cyclic Prompt Aggregation (CAPrompt) method that eliminates the dependency on task ID prediction by cyclically aggregating the knowledge from different prompts. Specifically, rather than predicting task IDs, we introduce an innovative prompt aggregation strategy during both training and inference to overcome prompt inconsistency by utilizing a weighted sum of different prompts. Thorough theoretical analysis demonstrates that under concave conditions, the aggregated prompt achieves lower error compared to selecting a single task-specific prompt. Consequently, we incorporate a concave constraint and a linear constraint to guide prompt learning, ensuring compliance with the concave condition requirement. Furthermore, to fully exploit the prompts and achieve more accurate prompt weights, we develop a cyclic weight prediction strategy. This strategy begins with equal weights for each task and automatically adjusts them to more appropriate values in a cyclical manner. Experiments on various datasets demonstrate that our proposed CAPrompt outperforms state-of-the-art methods by 2%-3%. Our code is available at https://github.com/zhoujiahuan1991/AAAI2025-CAPrompt.
Related papers
- Vector Quantization Prompting for Continual Learning [23.26682439914273]
Continual learning requires to overcome catastrophic forgetting when training a single model on a sequence of tasks.
Recent top-performing approaches are prompt-based methods that utilize a set of learnable parameters to encode task knowledge.
We propose VQ-Prompt, a prompt-based continual learning method that incorporates Vector Quantization into end-to-end training of a set of discrete prompts.
arXiv Detail & Related papers (2024-10-27T13:43:53Z) - PECTP: Parameter-Efficient Cross-Task Prompts for Incremental Vision Transformer [76.39111896665585]
Incremental Learning (IL) aims to learn deep models on sequential tasks continually.
Recent vast pre-trained models (PTMs) have achieved outstanding performance by prompt technique in practical IL without the old samples.
arXiv Detail & Related papers (2024-07-04T10:37:58Z) - Q-Tuning: Queue-based Prompt Tuning for Lifelong Few-shot Language Learning [21.261637357094035]
textbfQ-tuning enables lifelong learning of a pre-trained language model.
When learning a new task, Q-tuning trains a task-specific prompt by adding it to a prompt queue consisting of the prompts from older tasks.
arXiv Detail & Related papers (2024-04-22T22:04:16Z) - Consistent Prompting for Rehearsal-Free Continual Learning [5.166083532861163]
Continual learning empowers models to adapt autonomously to the ever-changing environment or data streams without forgetting old knowledge.
Existing prompt-based methods are inconsistent between training and testing, limiting their effectiveness.
We propose a novel prompt-based method, Consistent Prompting (CPrompt), for more aligned training and testing.
arXiv Detail & Related papers (2024-03-13T14:24:09Z) - OVOR: OnePrompt with Virtual Outlier Regularization for Rehearsal-Free
Class-Incremental Learning [10.299813904573695]
We propose a regularization method based on virtual outliers to tighten decision boundaries of the classifier.
A simplified prompt-based method can achieve results comparable to previous state-of-the-art (SOTA) methods equipped with a prompt pool.
arXiv Detail & Related papers (2024-02-06T16:31:11Z) - Hierarchical Decomposition of Prompt-Based Continual Learning:
Rethinking Obscured Sub-optimality [55.88910947643436]
Self-supervised pre-training is essential for handling vast quantities of unlabeled data in practice.
HiDe-Prompt is an innovative approach that explicitly optimize the hierarchical components with an ensemble of task-specific prompts and statistics.
Our experiments demonstrate the superior performance of HiDe-Prompt and its robustness to pre-training paradigms in continual learning.
arXiv Detail & Related papers (2023-10-11T06:51:46Z) - Self-regulating Prompts: Foundational Model Adaptation without
Forgetting [112.66832145320434]
We introduce a self-regularization framework for prompting called PromptSRC.
PromptSRC guides the prompts to optimize for both task-specific and task-agnostic general representations.
arXiv Detail & Related papers (2023-07-13T17:59:35Z) - Socratic Pretraining: Question-Driven Pretraining for Controllable
Summarization [89.04537372465612]
Socratic pretraining is a question-driven, unsupervised pretraining objective designed to improve controllability in summarization tasks.
Our results show that Socratic pretraining cuts task-specific labeled data requirements in half.
arXiv Detail & Related papers (2022-12-20T17:27:10Z) - Instance-wise Prompt Tuning for Pretrained Language Models [72.74916121511662]
Instance-wise Prompt Tuning (IPT) is the first prompt learning paradigm that injects knowledge from the input data instances to the prompts.
IPT significantly outperforms task-based prompt learning methods, and achieves comparable performance to conventional finetuning with only 0.5% - 1.5% of tuned parameters.
arXiv Detail & Related papers (2022-06-04T10:08:50Z) - IDPG: An Instance-Dependent Prompt Generation Method [58.45110542003139]
Prompt tuning is a new, efficient NLP transfer learning paradigm that adds a task-specific prompt in each input instance during the model training stage.
We propose a conditional prompt generation method to generate prompts for each input instance.
arXiv Detail & Related papers (2022-04-09T15:45:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.